
NONBLOCKING HIERARCHICAL CONTROL OF
DECENTRALIZED DES

Klaus Schmidt, Sebastian Perk and Thomas Moor

Lehrstuhl f̈ur Regelungstechnik
Universiẗat Erlangen-N̈urnberg

Cauerstraße 7, D–91058 Erlangen, Germany
klaus.schmidt@rt.eei.uni-erlangen.de

Abstract: This work considers a hierarchical control architecture for a class of discrete
event systems which can also be applied to decentralized control systems. It is shown that
nonblocking supervisory control on the high level of the hierarchy results in nonblocking
and hierarchically consistent control on the low level.Copyright c©2005 IFAC

Keywords: supervisory control, discrete event systems, decentralized systems,
hierarchical abstraction.

1. INTRODUCTION

There has been considerable effort in studying meth-
ods to reduce the complexity of synthesis algorithms
for the supervisory control of discrete event sys-
tems Yoo and Lafortune (2000); Hubbard and Caines
(2002); da Cunha et al. (2002); Zhong and Wonham
(1990); Lee and Wong (2002); Wong and Wonham
(1996); Leduc et al. (2001); Komenda and van Schup-
pen (2003). Generally, promising approaches assume
or impose a particular control architecture, such that
computationally expensive product compositions of
individual subsystems can be either avoided or at least
postponed to a more favorable stage in the design
process. Our contribution builds on hierarchical con-
trol and introduces two structural properties, marked
state acceptance and local nonblocking.

In hierarchical architectures Zhong and Wonham
(1990); da Cunha et al. (2002); Hubbard and Caines
(2002); Schmidt et al. (2004), controller synthesis
is based on a plant abstraction (high-level model),
which is supposed to be less complex than the original
plant model (low-level model). Technically, abstrac-
tions can be defined as language projections. While
projections are known to be of exponential compu-
tational complexity in the worst case, Wong (1997)

identifies application relevant cases with polynomial
complexity. An important question is how to derive the
plant abstraction, such that a high-level controller can
be implemented by available low-level control actions
(hierarchical consistency). A characterization of this
property is given in Zhong and Wonham (1990).

This paper builds on previous results by Schmidt
et al. (2004), using the natural language projection
on high-level events as an abstraction. We then recall
that this abstraction complies with hierarchical consis-
tency as defined in Zhong and Wonham (1990) and it
is shown that nonblocking high-level supervisors yield
nonblocking low-level supervisors. Furthermore, this
architecture is applied to decentralized DES with the
shared events of the subsystems as high-level events.
Whenever the projections of the subsystems behave
computationally nicely, this change of order promises
a substantial computational benefit. This is demon-
strated by an example.

The outline of the paper is as follows. Basic nota-
tions and definitions of supervisory control theory are
recalled in Section 2. Section 3 introduces the no-
tion of marked state acceptance and local nonblocking
combined with hierarchical control and proves non-
blocking control for the architecture. In Section 4, the
architecture is extended to form a decentralized and

hierarchical control architecture. A comprehensive ex-
ample in Section 5 illustrates our contribution.

2. PRELIMINARIES

We recall basic facts from supervisory control theory.
Wonham (2004); Cassandras and Lafortune (1999).

For a finite alphabetΣ, the set of all finite strings
over Σ is denotedΣ∗. We write s1s2 ∈ Σ∗ for the
concatenation of two stringss1, s2 ∈ Σ∗. We write
s1 ≤ swhens1 is aprefixof s, i.e. if there exists a string
s2 ∈ Σ∗ with s = s1s2. The empty string is denoted
ε ∈ Σ∗, i.e.sε = εs= s for all s∈ Σ∗. A languageover
Σ is a subsetH ⊆Σ∗. Theprefix closureof H is defined
by H := {s1 ∈ Σ∗|∃s∈ H s.t. s1 ≤ s}. A languageH
is prefix closedif H = H.

The natural projection pi : Σ∗ → Σ∗
i , i = 1,2, for the

(not necessarily disjoint) unionΣ = Σ1∪Σ2 is defined
iteratively: (1) let pi(ε) := ε; (2) for s∈ Σ∗, σ ∈ Σ,
let pi(sσ) := pi(s)σ if σ ∈ Σi , or pi(sσ) := pi(s)
otherwise. The set-valued inverse ofpi is denoted
p−1

i : Σ∗
i → 2Σ∗

, p−1
i (t) := {s ∈ Σ∗| pi(s) = t}. The

synchronous product H1||H2 ⊆ Σ∗ of two languages
Hi ⊆ Σ∗

i is H1||H2 = p−1
1 (H1)∩ p−1

2 (H2) ⊆ Σ∗.

A finite automatonis a tupleG = (X,Σ,δ,x0,Xm),
with the finite set ofstates X; the finite alphabet of
eventsΣ; the partialtransition functionδ : X×Σ → X;
the initial state x0 ∈ X; and the set ofmarked states
Xm ⊆ X. We write δ(x,σ)! if δ is defined at(x,σ).
In order to extendδ to a partial function onX ×Σ∗,
recursively letδ(x,ε) := x andδ(x,sσ) := δ(δ(x,s),σ),
whenever bothx′ = δ(x,s) andδ(x′,σ)!. L(G) := {s∈
Σ∗ : δ(x0,s)!} andLm(G) := {s∈ L(G) : δ(x0,s)∈Xm}
are theclosedandmarked languagegenerated by the
finite automatonG, respectively. For a formal defini-
tion of the synchronous composition of two automata
G1 andG2 we refer to e.g. Cassandras and Lafortune
(1999) and note thatL(G1||G2) = L(G1)||L(G2).

In a supervisory control context, we writeΣ = Σc ∪
Σu, Σc ∩Σu = /0, to distinguishcontrollable (Σc) and
uncontrollable(Σu) events. Acontrol patternis a set
γ, Σu ⊆ γ ⊆ Σ, and the set of all control patterns is
denotedΓ ⊆ 2Σ. A supervisoris a mapS: L(G) → Γ,
whereS(s) represents the set of enabled events after
the occurrence of strings; i.e. a supervisor can dis-
able controllable events only. The languageL(S/G)
generated byG under supervisionS is iteratively de-
fined by (1) ε ∈ L(S/G) and (2) sσ ∈ L(S/G) iff
s∈ L(S/G),σ ∈ S(s) and sσ ∈ L(G). Thus,L(S/G)
represents the behavior of theclosed-loop system. To
take into account the marking ofG, let Lm(S/G) :=
L(S/G)∩Lm(G). The closed-loop system isnonblock-
ing if Lm(S/G) = L(S/G), i.e. if each string inL(S/G)
is the prefix of a marked string inLm(S/G).

A languageH is said to be controllable w.r.t.L(G)
if there exists a supervisorS such thatH = L(S/G).
The set of all languages that are controllable w.r.t.

L(G) is denotedC (L(G)) and can be characterized
by C (L(G)) = {H ⊆ L(G)| ∃S s.t. H = L(S/G)}.
Furthermore, the setC (L(G)) is closed under arbi-
trary union. Hence, for everyspecificationlanguageE
there uniquely exists asupremal controllable sublan-
guageof E w.r.t. L(G), which is formally defined as
κL(G)(E) := ∪{K ∈ C (L(G))| K ⊆ E}. A supervisor
S that leads to a closed-loop behaviorκL(G)(E) is
said to bemaximal permissive. A maximal permissive
supervisor can be realized on the basis of a generator
of κL(G)(E). The latter can be computed fromG and
a generator ofE. The computational complexity is of
order O(N2M2), whereN and M are the number of
states inG and the generator ofE, respectively.

A languageE is Lm-closedif E∩Lm = E and the set of
Lm(G)-closed languages is denotedFLm(G). For spec-
ificationsE ∈ FLm(G), the plantL(G) is nonblocking
under maximal permissive supervision.

3. HIERARCHICAL CONTROL SYSTEMS

For hierarchical control, the event-based scheme in
Zhong and Wonham (1990) (compare Figure 2) is
used. The detailed plant modelG and the supervisor
Slo form a low-level closed-loop system, indicated by
Conlo (control action) andIn f lo (feedback informa-
tion). Similarly, the high-level closed loop consists of
an abstract plant modelGhi and the supervisorShi. The
two levels are interconnected viaComhilo andIn f lohi.
The former allowsShi to impose high-level control on
Slo, the latter drives the abstract plantGhi in accor-
dance to the detailed model. From the perspective of
the high-level supervisor, the forward path sequence
Comhilo, Conlo is usually designated “command and
control”, while the feedback path sequenceIn f lohi,
In f hi is identified with “report and advise”.

3.1 Basic Definitions

Definition 3.1.(Hierarchical Abstraction). LetG =
(X,Σ,δ,x0,Xm) be a DES andΣhi ⊆ Σ a set of high-
level events. Areporter map1 is a mapθ : Σ∗ → (Σhi)∗

such that (1)θ(ε) = ε and (2) eitherθ(sσ) = θ(s) or
θ(sσ) = θ(s)σhi, whereσ ∈ Σ, σhi ∈ Σhi. The high-
level language is defined byLhi := θ(L(G)). The high-
level marking is chosen s.t.Lhi

m ⊆ Lhi, whereLhi
m is

required to be regular. The canonical recognizer ofLhi
m

is denotedGhi, and hence,L(Ghi) = Lhi, Lm(Ghi) =
Lhi

m. Finally, high-level controllable and uncontrollable
events are denotedΣhi

c and Σhi
u , respectively, where

Σhi = Σhi
c ∪Σhi

u , Σhi
c ∩Σhi

u = /0. (G, phi,Ghi) is called a
hierarchical abstraction.

For our further discussion, we need to define the
interconnection of low- and high-level supervisors
with the plant.

1 In the sequel, we focus our attention on the reporter mapθ = phi,
wherephi is the natural language projection into(Σhi)∗.

Definition 3.2.(Hierarchical Control System). Refer-
ring to the notation in Definition 3.1, ahierarchi-
cal control system (HCS)consists ofG, Ghi, Shi and
Slo, where thehigh-level supervisor Shi and thelow-
level supervisor Slo fulfill the following conditions:
Shi : Lhi → Γhi with the high-level control patterns
Γhi := {γ|Σhi

u ⊆ γ ⊆ Σhi}; and Slo : L(G) → Γ with
θ(L(Slo/G)) ⊆ L(Shi/Ghi).

Given a high-level specificationEhi ∈ FLhi
m

, we can

synthesizeShi such thatL(Shi/Ghi) = κLhi(Ehi) with
a nonblocking high-level closed-loop. At this stage,
the remaining task is to implement high-level control
actions for the low-level plant by means ofSlo.

Definition 3.3.(Hierarchical Control Problem).
Given G,Ghi,Shi, find a low-level supervisorSlo as
in Definition 3.2 such that the low-level controlled
language of the HCS,L(Slo/G), is nonblocking.

For the rest of this paper, we assume thatΣhi ⊆ Σ and
the reporter mapθ = phi with phi : Σ∗ → (Σhi)∗ is
chosen. The following lemma is taken from Schmidt
et al. (2004) and states that the HCS is hierarchical
consistent for a special implementation of the low-
level supervisor.

Definition 3.4.(Consistent Implementation). Given a
hierarchical abstraction(G, phi,Ghi) and a supervi-
sor Shi, the consistent implementationSlo of Shi is
Slo(s) := Shi(shi)∪ (Σ−Σhi), for s∈ L(G), andshi :=
phi(s). (G, phi,Ghi,Shi,Slo) is called a HCS with a
consistent implementation.

Lemma 3.1.(Hierarchical Consistency (HC)). If a con-
sistent implementation is chosen then he
hierarchical control system in Definition 3.2 ishierar-
chically consistent, i.e. phi(L(Slo/G)) = L(Shi/Ghi).

3.2 Local Nonblocking and Marked State Consistency

As a key-tool for achieving nonblocking behavior, the
following properties of DES,local nonblocking and
marked state acceptance, are introduced.

Definition 3.5.(Locally Nonblocking DES). Let
(G, phi,Ghi) be a hierarchical abstraction.shi ∈ Lhi is
locally nonblocking if for alls∈ L(G) with phi(s) =
shi and ∀σ ∈ Σhi(shi), ∃uσ ∈ (Σ − Σhi)∗ s.t. suσσ ∈
L(G). (G, phi,Ghi) is locally nonblocking ifshi is lo-
cally nonblocking.

This means, that every string has a local successor
string ending with any of the high-level events which
are possible after the corresponding high-level string.
The local nonblocking condition is equivalent to the
observerproperty in Wonham (2004).

Marked state acceptance is a condition relating high-
level and low-level marking.

Definition 3.6.(Marked State Acceptance). Let
(G, phi,Ghi) be a hierarchical abstraction and define

Lshi,ex := {s∈ L(G)|phi(s) = shi ∧

∃σhi ∈ Σhi s.t.sσhi ∈ L(G)} ⊆ Σ∗.

as the set of exit strings ofshi ∈ Lhi.
The stringshi

m ∈ Lhi
m is marked state accepting2 if for

all sex∈ Lshi
m,ex

∃s′ ≤ sex with phi(s′) = shi
m ands′ ∈ Lm.

(G, phi,Ghi) is marked string accepting ifshi
m is marked

string accepting for allshi
m ∈ Lhi

m.

This means every exit string corresponding to a
marked high-level string has a marked predecessor
string in the low level and each low-level marked state
can be extended to an exit string if the high-level string
has a successor event.

Figure 1 illustrates the above definitions.Σhi = {α,β}
denotes the set of high-level events anda is a low-
level event. The entry strings and the exit strings for
α ∈ Lhi areLα,e = {aα} andLα,ex = {aαaa,aαaaa},
respectively. The automaton is not locally nonblock-
ing asα 6∈ Laαaaa,α = {β} but α ∈ Σhi(α) for α ∈ Lhi.
Also marked state acceptance is violated asaαaadoes
not have a marked predecessor string.

aaa

a a

a

αα

β

Fig. 1. Illustration of the definitions

Definition 3.7.(Live Regular Language). A regular lan-
guageL∈ Σ∗ is called live if∀s∈ L,∃σ∈ Σ s.t.sσ∈ L.

Liveness establishes that after any string in the given
language, there is a feasible successor event.

Combining the consistent implementation with marked
state acceptance and the locally nonblocking condi-
tion, the following theorem states that the proposed
control architecture is nonblocking and hierarchically
consistent.3

Theorem 3.1.(Live Nonblocking Control). Let
(G, phi,Ghi,Shi,Slo) be a hierarchical control system
with a consistent implementation. Also let the pro-
jected system(G, phi,Ghi) be marked state accepting
and locally nonblocking. If the high-level supervised
languageL(Shi/Ghi) is live, thenSlo solves the hierar-
chical control problem in Definition 3.3 and the HCS
is hierarchically consistent.

2 Note thatshi ∈ Lhi −Lhi
m ⇒ (phi)−1(shi)∩Lm = /0.

3 Proofs of theorems and lemmas in this paper are given in Schmidt
et al. (2005).

4. HIERARCHICAL CONTROL FOR
DECENTRALIZED SYSTEMS

In the sequel the hierarchical architecture is applied to
decentralized control systems.

Definition 4.1.(Decentralized Control System). Ade-
centralized control system(DCS) consists of subsys-
tems, modeled by finite state automataGi , i = 1, . . . ,n
over the respective alphabetsΣi . The overall system
is defined asG := ||ni=1Gi over the alphabetΣ :=Sn

i=1 Σi . The controllable and uncontrollable events
are Σi,c := Σi ∩ Σc and Σi,u := Σi ∩ Σu, respectively,
whereΣc ∪Σu = Σ andΣc ∩Σu = /0. For brevity and
convenience, letL := L(G), Lm := Lm(G), Li := L(Gi),
andLi,m := Lm(Gi).

Note that each two subsystemsGi ,G j of a DCS are
synchronized by shared events ifΣi ∩Σ j 6= /0.

The definition of the combined hierarchical and de-
centralized architecture is given as follows (Figure 2).

Definition 4.2. A Hierarchical and Decentralized Con-
trol System (HDCS) consists of the following entities

• A detailed plant model is a decentralized control
systemG as in Definition 4.1.

• Locally nonblocking low-level controllers are
denotedSi : Li → Γi , whereΓi are the respec-
tive control patterns. Low-level closed-loop lan-
guages are denotedLc

i := L(Si/Gi), Lc
i,m := Lc

i ∩
Li,m, Lc := ||ni=1Lc

i , Lc
m := ||ni=1Lc

i,m = Lc ∩ Lm.
Also let Gc be a generator such thatLc = L(Gc),
Lc

m = Lm(Gc).
• (Gc, phi,Ghi) is a hierarchical abstraction and

the reporter map:θ := phi is used wherephi :
Σ∗ → (Σhi)∗ denotes the natural projection with

nS
i, j,i 6= j

(Σi ∩Σ j)⊆ Σhi ⊆ Σ and the high level mark-

ing is chosen as4 Lhi
m := phi(Lc

m). High-level con-
trollable events are defined asΣhi

c := Σc∩Σhi and
Σhi

u := Σu∩Σhi.
• The high-level supervisor is denotedShi : Lhi →

Γhi with the high-level closed-loop language
L(Shi/Ghi) and a valid low-level supervisorSlo :
Lc →Γ must fulfill phi(L(Slo/Gc))⊆ L(Shi/Ghi).

• a decentralized implementation ofSlo consists of
supervisorsSlo

i s.t.L(Slo
i /Gc

i) = pi(L(Slo/Gc)).

Lemma 4.1 is taken from Schmidt et al. (2004). It
enables the computation of hierarchical abstractions
by only using hierarchically abstracted subsystems.

Lemma 4.1.(High Level Plant). Assume the control
architecture of Definition 4.2 and letLhi

i = phi(Lc
i)

andLhi
i,m = phi(Lc

i,m). Then the high level closed and

marked languages areLhi = phi(‖n
i=1Lc

i) = ‖n
i=1Lhi

i and
Lhi

m = phi(‖n
i=1Lc

i,m) = ‖n
i=1Lhi

i,m, respectively.

4 By constructionLhi
m is regular.

Shi

In f hi

Conhi

Ghi

In f lohiComhilo

S1/G1

Sn/Gn

S2/G2

Slo
1

Slo
n

Slo
2

Conlo
1

In f lo
i Conlo

n

In f lo
n Conlo

2

In f lo
2

Fig. 2. Control Scheme for HDCS

Mutual controllability ensures that the decentralized
subsystems agree on the control action to be executed.
It was established in Lee and Wong (2002).

Lemma 4.2.(Mutual Controllability). For a HDCS as
in Definition 4.2, letLhi

i := phi(Li). If Lhi
i andLhi

j are
mutually controllable fori, j = 1, . . . ,n, i.e.

Lhi
j (Σhi

u ∩Σi ∩Σ j)∩ p j
(

(phi
i)−1(Lhi

i)
)

⊆ Lhi
j ,

then forKhi controllable with respect toLhi, it holds
that pi(Khi)‖(Σi −Σhi)∩Lc

i is controllable w.r.t.Lc
i .

For the final result we assume that the low-level con-
trolled subsystemsGc

i are marked state accepting and
locally nonblocking with respect toΣhi. The main
theorem gives a possible choice of the low-level su-
pervisor such that the proposed control architecture is
hierarchically consistent and nonblocking.

Theorem 4.1.(Main Result). Let the hierarchical con-
trol architecture for decentralized DES be defined as
in Definition 4.2 and let all hierarchical abstractions
(Gc

i ,G
hi
i), i = 1, . . . ,n be marked state accepting and

locally nonblocking w.r.t.Σhi and let the high-level
languagesLhi

i be mutually controllable. Also chose a
standard supervisor implementation forSlo and define
the corresponding decentralized supervisorsSlo

i

Slo
i (pi(s)) := pi(S

lo(s)), i = 1, . . . ,n.

If all languagespi(L(Shi/Ghi)) are circular5 , then
the HDCS is hierarchically consistent and the low-
level control is nonblocking and theSlo

i constitute a
decentralized implementation ofSlo.

For determining the low-level supervisorsSlo
i , it is

not necessary to computeSlo. Lemma 4.3 shows a
decentralized computation ofSlo

i .

Lemma 4.3.Let Slo
i , i = 1, . . . ,n be defined as in The-

orem 4.1. Then∀i,L(Slo
i /Gc

i) = κLc
i
(Ei) with Ei =

pi
(

L(Shi/Ghi)
)

‖(Σi −Σhi).

5 In this paper, circularity is required. There are other sufficient
conditions which give the same result

Remark:The proposed architecture readily extends to
a multi-level hierarchy. For notational convenience the
two-level hierarchy was chosen in this paper.

5. EXAMPLE

Our method shall be demonstrated by an example. The
control system is part of a larger production plant and
its purpose is to distribute workpieces (see Figure 3).

Gdep G1b G1c G1a G0

G3 G2

Fig. 3. Distribution system

5.1 Synthesis on Level 0

For sake of clarity, we will give a detailed description
of the controller synthesis on the lowest level (level 0)
for the subsystemG1a.

SubsystemG(0)
1a represents the section of the long

conveyor belt between the stack feeder (G0) and the
sensor detecting arrival of workpieces at the right

pusher. The discrete event model ofG(0)
1a describes the

motion on the conveyor belt as well as the motion
of the pusher on the lowest level transporting work-
pieces toG2. It takes into account sensor readings
and actuator commands and has 83 states. There are
more efficient ways of modeling the plant but the
focus of this work is to generate supervisors which
can be implemented directly on a PLC. The speci-

fication E(0)
1a , stating that either the conveyor belt or

the pusher is allowed to move, yields a supervisorS(0)
1a

s.t.L(S(0)
1a /G(0)

1a) = κ
L(G

(0)
1a)

(

E(0)
1a

)

. Figure 4 shows the

canonical recognizerG(0),c
1a for L(S(0)

1a /G(0)
1a) and Table

5.1 provides event definitions.

a workpiece (wp) fromG0 to G1 b G1 starts moving
c wp fromG1 to G2 d G1 stops
e wp arrives atGpu2 f wp leavesGpu2

g wp fromG1 to G3 i Gpu2 extends
h wp fromG1 to Gdep m Gpu2 retracts
n Gpu2 leaves extended position l Gpu2 stops
j Gpu2 leaves rest position k Gpu2 is extended
o Gpu2 arrives at rest position q wp leavesGdep

p Gpu2 ready for next transport u G3 is empty
s wp arrives atGdep t push wp toG3

r wp arrives atGpu1 v G2 is empty

a

a

b bb

cd

dd

e f

f f ff

f
f

f

g
h

i

i
j

j
k

k

l

l

lm

m

n

n

o

p

Fig. 4. Low-level plantG(0),c
1a

Now the level 1 abstraction can be computed with the

relevant high-level eventsΣ(1)
1a = {a,b,c,d,e,g,h, p}.

ProjectingL(G(0),c) onΣ(1)
1a yieldsL(G(1)

1a) (see Figure

5). It can easily be verified thatG(0),c
1a is marked state

accepting and locally nonblocking wrt.Σ(1)
1a .

a

a

b
b

b

c

d

d

d e
g
h

p

Fig. 5. Abstracted plantG(1)
1a

The abstractionsG(1)
1b , G(1)

1c andG(1)
dep are obtained by

applying analogous computations.

5.2 Synthesis on Level 1

Applying Lemma 4.1 to the abstracted subsystems, the

level 1 plant isG(1)
1 = G(1)

1a ‖G(1)
1b ‖G(1)

1c ‖G(1)
dep. it has 271

states, and it can be verified that the decentralized sub-
plants are mutually controllable. According to Theo-
rem 4.1, a supervisory controller can be synthesized
on level 1 and translated to level 0. The specifications
are (see Figure 6):

• the long conveyor belt must stop ({d}) when an

event from{e, r,s} occurs and only then (E(1)
1).

• no more workpiece shall be transported to the

depot if it is full (E(1)
2).

• workpieces shall be delivered in the orderG3 -

G3 - G2 (E(1)
3).

h
t

t

c

q
e

u
ud

v
r
s

E(1)
1 E(1)

2 E(1)
3 E(2)

Fig. 6. Specifications

G(0)
1a G(0)

1b G(0)
1c G(0)

dep G(0)
s f G(0)

2 G(0)
3

83 63 13 5 8 4 4

E(0)
1a E(0)

1b E(0)
1c E(0)

dep E(0)
s f ‖3

i=1E(1)
i E(2)

2 2 7 - 9 12 3

Table 1. Plant and Specifications

The level 1 supervisor isS(1)
1 with L(S(1)

1 /G(1)
1) =

κ
L(G

(1)
1)

(
3S

i=1
E(1)

i

)

∩ F
Lm(G

(1)
1)

and the level 1 super-

vised plant has 65 states. It can also be verified that the

projected level 1 controlled languagespi(L(S(1)
1 /G(1)

1))
are circular fori ∈ {1a,1b,1c,dep}.

5.3 Exemplary Level 0 Supervisor Implementation

The decentralized implementation of supervisorS(1)
1

on level 0 shall be demonstrated using the subsystem

G(0),c
1a . According to Lemma 4.3, a supervisorS1−0

1a

s.t. L(S1−0
1a /G(0),c

1a) = κ
L(G

(0),c
1a)

(E1−0
1a) with E1−0

1a =

p(0)
1a

(

L(S(1)
1 /G(1)

1)‖(Σ1a−Σ(1)
1a)∗

)

with p(0)
1a : (Σ(0))∗ →

(Σ(0)
1a)∗ and the automatonS1−0

1a /G(0),c
1a has 80 states.

Analogous computations for the other subplants yield
local supervisors acting in parallel and guaranteeing
the specified system behavior.

5.4 Implementation Results

For classifying the computational effort of synthesis
and implementation, the number of states of the su-
pervisor implementations of the monolithic synthesis
and of the proposed method are compared.

Canonical recognizers of the plant and the overall
specification have 10·106 and 8·103 reachable states,
respectively (see Table 5.4 for the composition of plant
and specifications). The monolithic supervisor synthe-
sis yields a supervised plant with 4.7 · 106 reachable
states. While there exist more efficient models for this
system our model pragmatically refers to real world
sensors and actuators. This is a prerequisite for auto-
matic generation of PLC code.

S1−0
0 /G0

0 S1−0
1a /G0

1a S1−0
1b /G0

1b S1−0
1c /G0

1c
12 80 87 7

S1−0
dep/G0

dep S1−0
2 /G0

2 S1−0
3 /G0

3

5 11 11

Table 2. Decentralized supervisors

For computing the controller for the whole system,
one more level of the hierarchy is added to our

approach, consisting of an abstraction ofG(1),c)
1 (9

states),G(2)
2 (2 states) andG(2)

3 (2 states). Implement-
ing the specificationE(2) which states that the work-
pieces shall leave the plant in the orderG3 - G3 - G2

the controlled plant on level 2 has 18 states and the
level 2 supervisor action can be translated to level 0
as shown before, yielding 7 decentralized supervisors

(see Table 5.4). It is essential to note that the compu-
tation of the overall plant is not necessary and that the
supervisors have a small number of states, whereas a
monolithic implementation is not advisable.

6. CONCLUSIONS

In this paper, the decentralized structure of a discrete
event system has been used to reduce the complex-
ity of the supervisor design procedure as well as the
complexity of the supervisor implementation. To this
end, a hierarchical abstraction which respects the de-
centralized structure of the system was introduced and
a hierarchical supervisor design procedure was elab-
orated. Furthermore nonblocking behavior and hierar-
chical consistency of the supervised plant was proven.
The results were illustrated by a real world example.
Algorithms for the proposed method have been im-
plemented and ongoing work provides a solution to
automatic PLC code generation.

REFERENCES

C.G Cassandras and S. Lafortune. Introduction to
discrete event systems.Kluwer, 1999.

A.E.C. da Cunha, J.E.R. Cury, and B.H. Krogh. An
assume guarantee reasoning for hierarchical coor-
dination of discrete event systems.WODES, 2002.

P. Hubbard and P.E. Caines. Dynamical consistency in
hierarchical supervisory control.IEEE TAC, 2002.

J. Komenda and J. H. van Schuppen. Decentralized
control with coalgebra.ECC, 2003.

R.J. Leduc, W.M. Wonham, and M. Lawford. Hierar-
chical interface-based supervisory control: Parallal
case.Allerton Conf. on Comm., Contr. and Comp.,
2001.

S-H. Lee and K.C. Wong. Stuctural decentralised
control of concurrent DES.EJC, 2002.

K. Schmidt, J. Reger, and T. Moor. Hierarchical
control of structural decentralized DES.WODES,
2004.

K. Schmidt, S.Perk, and T. Moor. Noblocking hier-
archical control of decentralized DES.Technical
Report, Lehrstuhl f̈ur Regelungstechnik, Universität
Erlangen-N̈urnberg, 2005.

K. Wong. On the complexity of projections
of discrete-event systems., 1997. URL
citeseer.nj.nec.com/wong98complexity.html.

K.C. Wong and W.M. Wonham. Hierarchical control
of discrete-event systems.Discrete Event Dynamic
Systems, 1996.

W.M Wonham. Notes on control of discrete event
systems. Department of Electrical & Computer
Engineering, University of Toronto, 2004.

T. Yoo and S. Lafortune. A generalized framework for
decentralized supervisory control of discrete event
systems.WODES, 2000.

H. Zhong and W.M. Wonham. On the consistency of
hierarchical supervision in discrete-event systems.
IEEE TAC, 1990.

