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Abstract: This paper addresses the control of multitasking DES that allow for dealing with
liveness properties in the case where multiple classes of tasks have to be independently completed
by the system. Colored marking generators (CMG) have been previously introduced as a
model to consider multitasking control. The computational cost of the supervisor synthesis
for multitasking DES grows with the number of classes of tasks. In this paper we investigate
conditions under which removing tasks of the DES model does not affect the result of supervisory
control in the sense that their completion is guaranteed as a consequence of the completion of
the other tasks in the DES model. Conditions are derived under which tasks of a class or a set
of classes can be removed from the model, and the results are extended to the case of abstracted
models in a hierarchical and decentralized control architecture. Those conditions, which can
be verified in polynomial time, are stated as properties of strongly connected components of
the automata models in different levels of the control hierarchy. The results of the paper are
illustrated by a manufacturing system example, showing the potential gains of the approach.
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1. INTRODUCTION

The supervisory control theory (SCT) is an expressive
framework for the synthesis of controllers for discrete-
event systems (DES) (Ramadge and Wonham, 1987). In
the SCT, automata models represent the plant and closed-
loop desired behaviors, while marked states indicate the
completion of system tasks. In this framework a supervisor
constrains the behavior of the plant in order to respect the
closed-loop specification and to ensure nonblocking, i.e.,
it always allows the controlled system to reach a marked
state. In the SCT, nonblocking can be interpreted as a live-
ness specification that ensures that the supervisor never
prevents the completion of a system task. In (de Queiroz
et al., 2005) an approach is introduced to allow for dealing
with the case where multiple classes of tasks are identified
and (strongly) nonblocking corresponds to the ability of
the system to independently complete tasks of all dif-
ferent classes. DES problems comprising multiple classes
of tasks often arise in applications, like in manufacturing
and communication systems for example (Schmidt et al.,
2007; de Queiroz et al., 2005; Fabian and Kumar, 2000;
Thistle and Malhame, 1997). Colored marking generators
(CMG) are introduced in (de Queiroz et al., 2005) for
the synthesis of a minimally restrictive supervisor that
respects the specified behavior and ensures the liveness
of multiple tasks. Modular control in this framework is
addressed in (de Queiroz and Cury, 2005).

In (Schmidt et al., 2007), multitasking control is extended
with hierarchical and decentralized control ideas (Hill and
Tilbury, 2006; Feng and Wonham, 2008; Schmidt et al.,
2008) by combining the computational efficiency of hier-

archical abstractions with the ability to specify multiple
liveness objectives. To this end, a colored (multitasking)
version of both the natural projection and the observer
property (Wong and Wonham, 1996) is employed in the
hierarchical abstraction process such that the resulting hi-
erarchical control architecture is hierarchically consistent
and (strongly) nonblocking.

The computational cost of the supervisor synthesis for
multitasking DES grows with the number of classes of
system tasks. This is essentially due to the co-accessibility
test involved in the synthesis procedure which must be
performed with relation to each of the classes of tasks. In
some particular cases it may be observed that completion
of tasks in a particular class is always guaranteed as a
consequence of completion of tasks of other classes. Such
redundant tasks, that may be introduced either by the
modeling process of the DES or as a consequence of
the abstraction process in hierarchical control, could be
removed from the model to reduce the computational cost.
In this paper we derive conditions under which tasks of a
class can be identified as redundant tasks, and extend the
results to the case where hierarchical and decentralized
architectures are to be used. Those conditions, which can
be verified in polynomial time, are stated as properties
on strongly connected components of the plant models in
different levels of the control hierarchy.

The results of the paper are illustrated by a manufacturing
system example with effective reductions in the number of
classes of tasks. Also, the example shows that the number
of states of the abstracted plant models is potentially
reduced when removing redundant classes of tasks.



The paper is organized as follows. Section 2 introduces the
basic concepts of multitasking supervisory control. Main
results on the verification of the stated conditions are
presented in Section 3, and extended to hierarchical and
decentralized control in Section 4. The detailed example in
Section 5 illustrates the approach, and some conclusions
are given in Section 6.

2. MULTITASKING DISCRETE EVENT SYSTEMS

2.1 Basic Notation

A color (label) for a multitasking discrete-event system
(MTDES) is associated to a class of task. Tasks belong to
the same class when they are related to liveness objectives
that have the same meaning in the control problem. Let
Σ be the set of all system events and C be the set of all
colors. Let Σ∗ be the set of all finite strings of elements in
Σ, including the empty string ǫ. A language L is a subset
of Σ∗. L represents the prefix closure of L. Each color
c ∈ C is assigned to a language Lc ∈ Pwr(Σ∗) (power set
of Σ∗) that represents the set of all event sequences in Σ
that can complete a task of the respective class. Thus, the
colored behavior of a MTDES can be modeled by the set
ΛC := {(Lc, c)|c ∈ C} ∈ Pwr(Pwr(Σ∗) × C).

For a colored behavior ΛC , the language marked by c ∈ C
is defined by Lc(ΛC) := L such that (L, c) ∈ ΛC . The
language marked by B ⊆ C is defined by LB(ΛC) :=
⋃

b∈B Lb(ΛC). The synchronous composition of MB1
∈

Pwr(Pwr(Σ∗
1) × B1) and NB2

∈ Pwr(Pwr(Σ∗
2) × B2) is

MB1
||NB2

:={(Lb(MB1
)||Lb(NB2

), b), ∀b ∈ B1 ∩ B2}
∪ {(Lb(MB1

)||LB2
(NB2

), b), ∀b ∈ B1 − B2}
∪ {(LB1

(MB1
)||Lb(NB2

), b), ∀b ∈ B2 − B1}.

An MTDES can be modeled by a Moore automaton, whose
outputs define the classes of tasks that are completed after
the corresponding strings. Formally, we define the colored
marking generator (CMG) G = (Q, Σ, C, δ, χ, q0), where Q
is a set of states; Σ is a set of events; C is a set of colors;
δ : Q × Σ → Q is a transition function; χ : Q → Pwr(C)
is a marking function; q0 is the initial state.

For a CMG G, the eligible event function Γ : Q → Pwr(Σ)
associates each state q ∈ Q to a subset of Σ with all
events that can occur in q. In order to extend δ to a
partial function on Q × Σ∗, recursively let δ(q, ε) = q
and δ(q, sσ) = δ(δ(q, s), σ), whenever both q′ = δ(q, s)
and δ(q′, σ) are defined. The generated language of G is
L(G) := {s ∈ Σ∗|δ(q0, s) is defined}, and the language
marked by c ∈ C, is given by Lc(G) := {s ∈ L(G)|c ∈
χ(δ(q0, s))}. The colored behavior of a CMG G is given by
ΛC(G) := {(Lc(G), c)|c ∈ C}. A formal definition of the
synchronous composition G1||G2 of two CMGs G1 and G2

is given in (de Queiroz et al., 2005). Note that L(G1||G2) =
L(G1)||L(G2) and ΛC(G1||G2) = ΛC(G1)||ΛC(G2).

Given a nonempty subset of colors B, a CMG G is strongly
nonblocking w.r.t. B, if ∀b ∈ B, L(G) = Lb(G), that is,
if any generated string can be completed (not necessarily
in the same way) to a task of all the classes represented
by colors of B. A colored behavior ΛC ∈ Pwr(Pwr(Σ∗)×
C) is strongly nonblocking w.r.t. B ⊆ C when ∀b ∈ B,

Lb(ΛC) = LC(ΛC).

2.2 Multitasking Supervisory Control

Let a MTDES be modeled by a colored marking gener-
ator G = (Q, Σ, C, δ, χ, q0) whose alphabet is partitioned
into controllable events Σc and uncontrollable events Σu.
We assume w.l.o.g. that a colored specification AD ⊆
Pwr(Σ∗) × D is constructed from a safety specification
K = K ⊆ L(G) and liveness conditions defined by the
set of classes of tasks C and a set of new classes E s.t.
E ∩ C = ∅ and D = C∪̇E as follows.

AD = {(Lc, c)| c ∈ D s.t. Lc = K ∩ Lc(G) for
c ∈ C and Lc ⊆ K for c ∈ E}.

(1)

A coloring supervisor S : L(G) → Pwr(Σ) × Pwr(E)
associates to each string of the plant a set of enabled events
and a set of colors (of E) marking the string as a completed
task of the classes represented by these colors. For S(s) =
(γ, µ), let R(S(s)) = γ and I(S(s)) = µ. The events that
can occur in S/G after the occurrence of a string s ∈ L(G)
are given by R(S(s)) ∩ Γ(δ(q0, s)). A string s ∈ L(S/G)
is marked by a color c ∈ C if s ∈ Lc(G) or by a color
e ∈ E if e ∈ I(S(s)). A coloring supervisor S is admissible
if ∀s ∈ L(G), Σu ∩ Γ(δ(q0, s)) ⊆ R(S(s)), and strongly

nonblocking w.r.t D if ∀d ∈ D, Ld(S/G) = L(S/G).

Theorem 1. ((de Queiroz et al., 2005)). Necessary and suf-
ficient conditions for the existence of an admissible color-
ing supervisor S strongly nonblocking w.r.t. D such that

ΛD(S/G) = AD and L(S/G) = LD(AD) are:

1) controllability: LD(AD)Σu ∩ L(G) ⊆ LD(AD);

2) D-closure: ∀d ∈ (D∩C), Ld(AD) = Ld(AD)∩Ld(G);
3) strong nonblocking of AD w.r.t. D.

In (de Queiroz et al., 2005), it is also proved that the
supremal controllable and strongly nonblocking colored
behavior contained in AD, named SupCSNB(AD, G, D),
exists and can be computed with complexity polynomial
in the number of states of the model.

3. REMOVING REDUNDANT COLORS

The algorithmic computation of SupCSNB(AD, G, D) as
defined above relies on an iterative computation of non-
blocking subbehaviors of ΛC(G)||AD for all colors d ∈ D.
Hence, each additional color contributes to the computa-
tional cost of the supervisor synthesis. The goal of this
section is to identify and remove colors that are not
relevant for the supervisor synthesis in order to reduce
this computational cost. The idea is first illustrated by an
example in Section 3.1, and then formalized in Section 3.2.

3.1 Motivation and Problem Formulation

We consider two neighboring components of the produc-
tion cell in Fig. 1; the conveyor belt C1 and the machine
M. The task of C1 is to transport parts to the machine
M, which processes each part before it can depart. C1 is

modeled by the CMG G
(1)
C1 in Fig. 2, where C1 stops if

c1stp occurs, and the events c1-0, c0-1 and c1-2, c2-1
describe the exchange of parts with the neighboring con-
veyor belts C0 and C2, respectively. The machine (CMG

G
(1)
M ) can start processing (ms) and finishes processing

with the uncontrollable event mf. In addition, one color



is introduced for each component. It is desired that C1
can always become empty (C1e) and that the machine
cannot be prevented from processing (Mp). Note that
transitions with controllable events are labeled with a tick
and that the set of colors is displayed next to the respective

state in all plant models. It is specified in M
(1)
C1−M that

every part entering C1 has to stop at M and can only
leave C1 after processing is finished. Fig. 2 displays the

CMG R
(1)
C1−M that represents the closed-loop behavior

SupCSNB(G, AD, D) with the plant G := G
(1)
C1 ||G

(1)
M , the

specification behavior AD := L(M
(1)
C1−M)||ΛC(G) accord-

ing to (1) and the color set D = C = {C1e, Mp}.
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Fig. 1. Production cell: (a) Picture; (b) Overview.
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Fig. 2. Conveyor belt C1 and machine M.

A closer inspection of R
(1)
C1−M reveals that, although the

colors C1e and Mp were introduced independently in their
respective component models, there is a direct dependency
after the supervisor synthesis. Suppose an additional SNB
supervisor S̃ shall be designed for a new specification ÃD

and the plant R
(1)
C1−M with the color set D = {C1e, Mp}.

It is now sufficient to synthesize a nonblocking supervisor
w.r.t. the color set D̃ = {Mp} since this already implies

SNB w.r.t. D due to the plant structure. In particular, S̃
makes sure that a state with color Mp is always reachable

in S̃/R
(1)
C1−M. Observing that S̃ can never disable the

uncontrollable event mf, this implies that it is also always

possible that an unmarked state is reached in S̃/R
(1)
C1−M.

Then, it holds that on each path back to a state with color
Mp, a state with the color C1e is passed. It can hence be
concluded that the color C1e is not relevant for any further

supervisor synthesis and can be removed from R
(1)
C1−M.

3.2 Condition for Color Removal

Based on the motivating example, the goal of this section
is to identify colors that are not relevant for the supervisor
synthesis. In order to reduce the computational effort for
the supervisor computation, we then propose to remove
such colors. Formally, we want to solve Problem 1.

Problem 1. Let G = (Q, Σ, C, δ, χ, q0) be a CMG, let Σu

be a set of uncontrollable events and assume that c ∈ C is
a color. We want to determine verifiable conditions such
that for all specifications AD according to (1)

ΛD(S̃/G) = ΛD(SupCSNB(G, AD, D)),

where S̃ : L(G) → 2Σ × 2D−C is a coloring supervisors for

the reduced specification AD̃ = {(Ld(Ad), d)|d ∈ D̃} over

the color set D̃ = D − {c}, i.e.,

ΛD̃(S̃/G) = SupCSNB(G, AD̃, D̃). �

We first adapt the definition of a strongly connected com-
ponent (SCC) in (Hopcroft and Ullman, 1975) to CMGs.

Definition 1. (SCC). Let G = (Q, Σ, C, δ, χ, q0) be a
CMG. A subgraph of G with the states G ⊆ Q is called a
strongly connected component (SCC) of G if for all state
pairs q, q′ ∈ G, there is u, u′ ∈ Σ∗ s.t. δ(q, u) = q′ and
δ(q′, u′) = q and for all G′ ⊃ G, G′ is not a SCC of G. �

Theorem 2 states sufficient conditions to solve Problem 1
by exploiting structural information about the plant G (a
proof can be found in (Schmidt and Cury, 2009)).

Theorem 2. (Main Theorem). Write C̃ = C − {c}. Prob-
lem 1 is solved if the following condition is satisfied. There
is no SCC with the states G ⊆ Q in G s.t.

(i)
⋃

q∈G χ(q) = C̃

(ii) ∄σ ∈ Σu, q ∈ G s.t. δ(q, σ) 6∈ G.

That is, c can be removed from the color set C of G and the
specification AD̃ can be used instead of AD if (i) and (ii)
hold. Note that Theorem 2 also applies to the motivating

example in Section 3.1. Both SCCs of R
(1)
C1−M with the

color Mp (states labeled with Mp) have an uncontrollable
transition with mf leaving the respective SCC.

3.3 Algorithmic Verification

The following algorithm allows to check the condition in
Theorem 2 by finding a violating SCC if such SCC exists.

Algorithm 1. (Check Removal of Color c).
Given: CMG G = (Q, Σ, C, δ, χ, q0), color c.

1. G̃ = (Q̃, Σ̃, C̃, δ̃, χ̃, q̃0) = G

2. delete all states with c from G̃; remove c from C̃:

∀q ∈ Q̃ : c ∈ χ̃(q) ⇒ Q̃ := Q̃ − {q}; C̃ := C̃ − {c}

3. find all SCCs in G̃ that contain states with all colors
in C̃. Denote these SCCs as G1, . . . ,Gm.

4. remove all states that are not in
⋃m

i=1 Gi from G̃:

∀q ∈ Q̃ : q 6∈
m
⋃

i=1

Gi ⇒ Q̃ := Q̃ − {q}

5. delete all states in Gi, i = 1, . . . , m that have uncon-
trollable transitions in the original automaton G that
lead outside Gi, i.e., ∀i ∈ {1, . . . , m}:

∀q ∈ Gi, ∀σ ∈ Σu : δ(q, σ) 6∈ Gi ⇒ Q̃ := Q̃ − {q}



6. if states were deleted in step 5. and Q̃ is not empty
go to step 3.

7. if Q̃ is empty
return true

else
return false �

The algorithm iteratively removes states from the plant
CMG G if they violate (i) (3. and 4.) or if they violate (ii)
(5.) in Theorem 2. The algorithm terminates in at most
|Q| steps, where |Q| is the state count G. Furthermore,
the computation of the SCCs in 3. can be performed by
Tarjan’s algorithm in (Hopcroft and Ullman, 1975) with
a complexity of O(max{|Q|, |δ|}), where |δ| denotes the
number of transitions of G. Together, Algorithm 1 exhibits
a computational complexity of O(|Q| · max{|Q|, |δ|}).

We apply Algorithm 1 to G = R
(1)
C1−M in Fig. 2 and

c = C1e. In 2., the initial state is removed. Two SCCs
that consist of the states with the color MP remain after 3.
and 4. Since the uncontrollable event mf leads outside both
SCCs, Q̃ is empty after 5. Hence, the algorithm returns
true, which is consistent with the previous discussion.

It is readily observed that an iterative application of
the above procedure enables the removal of an arbitrary
number of colors as long as Algorithm 1 returns true.

4. MULTITASKING HIERARCHICAL AND
DECENTRALIZED CONTROL

In the previous section, it is pointed out that the removal
of redundant colors leads to computational savings in
the supervisor synthesis for MTDES. In this section, we
combine the idea of removing colors with hierarchical and
decentralized control for MTDES (Schmidt et al., 2007).

4.1 Control Approach

It is assumed that the original (low-level) plant is given as
a set Gi = (Qi, Σi, Ci, δi, χi, q0,i), i = 1, . . . , n of CMGs,
and the overall plant is G = ||ni=1Gi with the color set
C :=

⋃n

i=1 Ci. The hierarchical abstraction of G is based
on the colored natural projection.

Definition 2. (Colored Natural Projection). Let ΛC ∈
Pwr(Pwr(Σ∗) × C) be a colored behavior, and assume
Σ0 ⊆ Σ with the natural projection p0 : Σ∗ → Σ∗

0. The
colored natural projection m0 : Pwr(Pwr(Σ∗) × C) →
Pwr(Pwr(Σ∗

0) × C) is defined such that

Lc(m0(ΛC)) = p0(Lc(ΛC)), for all c ∈ C.

The high-level plant G0 is then computed using abstrac-
tions of the plant components Gi, i = 1, . . . n on a superset
of their shared events Σi,∩ :=

⋃n

k=1,k 6=i(Σi ∩ Σk).

Definition 3. (High-level Plant). Let G and Gi, i = 1, . . . ,
n, p0 and m0 be defined as above. Assume that Σi,0 ⊆ Σi

are given such that Σi,∩ ⊆ Σi,0 and introduce the natural
projections pΣi→Σi,0

and the colored natural projections
mΣi→Σi,0

. Then, with L(Gi,0) := pΣi→Σi,0
(L(Gi)) and

ΛC(Gi,0) := mΣi→Σi,0
(ΛC(Gi,0)), the high-level plant G0

is defined by
G0 = ||ni=1Gi,0, �

The abstraction process is illustrated on the right-hand
side of Fig. 3. Given a coloring behavior AD,0 ∈
Pwr(Pwr(Σ∗

0)×D) as a high-level specification, the color-
ing high-level supervisor S0 : L(G0) → Pwr(Σ0)×Pwr(E)
with E = D − C is computed such that S0 realizes
SupCSNB(AD,0, G0, D). The control action of the cor-
responding low-level supervisor S : L(G) → Pwr(Σ) ×
Pwr(E) is then defined for each s ∈ L(G) as

S(s) :=
(

S0(p0(s)) ∪ (Σ − Σ0), I(S0(p0(s)))
)

, (2)

such that L(S/G) = L(S0/G0)||L(G) and ΛC(S/G) =
ΛC(S0/G0)||ΛC(G).

Hence, the control action after a string s ∈ L(G) is
(

R(S(s)) ∩ Σi, I(S(s)) ∩ (Ci ∪ E)
)

,

as depicted on the left-hand side of Fig. 3.
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Gn

G1,0

Gn,0
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mΣ1→Σ1,0
mΣn→Σn,0

S0(s) ∪ (Σ − Σ0)

S0

S

∩

∩

Σ1

Σn

Fig. 3. Hierarchical and decentralized control architecture

In order to guarantee that the low-level closed loop S/G
is SNB, we employ the colored observer condition.

Definition 4. (Colored Observer (Schmidt et al., 2007)).
Let L ⊆ Σ∗ be a language and let ΛC ∈ Pwr(Pwr(Σ∗) ×
C) be a coloring behavior with LC(ΛC) ⊆ L. Also let
Σ0 ⊆ Σ and p0, m0 be defined as above. m0 is a ΛC -
observer (w.r.t. L) iff for each c ∈ C, p0 is an Lc(ΛC)-
observer (w.r.t. L), i.e, for each s ∈ L, t ∈ Σ∗

0, and c ∈ C

p0(s)t ∈ Lc(m0(ΛC)) ⇒∃u ∈ Σ∗ s.t. su ∈ Lc(ΛC)

and p0(su) = p0(s)t

Requiring that mΣi→Σi,0
is a ΛC(Gi)-observer for i =

1, . . . , n is sufficient for strongly nonblocking control.

Theorem 3. (Schmidt et al. (2007)). Assume that Gi, Gi,0,
and mΣi→Σi,0

, i = 1, . . . , n are defined as above. Also let
S0 be a strongly nonblocking coloring high-level supervisor
with a low-level supervisor S as in (2). If mΣi→Σi,0

is a
ΛC(Gi)-observer (w.r.t. L(Gi)) for all i = 1, . . . , n, then
the overall closed loop is SNB, i.e., for all c ∈ C

Lc(S/G) = L(S/G).

4.2 Removal of Redundant Colors

We now combine hierarchical control in the framework
presented in the previous section with the idea of removing
redundant colors. To this end, we first recall the mutual
controllability from (Lee and Wong, 2002).

Definition 5. (Mutual Controllability). The CMGs Gi and
Gj are denoted mutually controllable if

L(Gi)(Σj,u∩Σi) ∩ pΣi∪Σj→Σi
(p−1

Σi∪Σj→Σj
(L(Gj)) ⊆ L(Gi)

L(Gj)(Σi,u ∩ Σj)∩pΣj∪Σi→Σj
(p−1

Σj∪Σi→Σi
(L(Gi)) ⊆ L(Gj)



Mutual controllability ensures that after any execution of
a composed system, the occurrence of a shared uncon-
trollable event is either feasible in every subsystem which
shares it, or it is not feasible in any subsystem.

The following theorem is proved in (Schmidt and Cury,
2009). It relates the redundancy of a color c to the redun-
dancy of the color in the components where c appears.

Theorem 4. Let G = ||ni=1 be a plant with the components
Gi, i = 1, . . . , n, and let G0 be the high-level plant. Assume
that Gi, Gj are mutually controllable for all i 6= j. Also
define the set Ci,∩ :=

⋃n

l=1,l 6=i(Ci ∩ Cl) of shared colors
among components, and assume that c ∈ Ck − Ck,∩ for

some k ∈ {1, . . . , n}, C̃ := C − {c}, and S0 is a supervisor

such that S0/G0 is SNB for C̃. If Gk satisfies Theorem 2
for Ck − {c}, then S evaluated with (2) is SNB w.r.t. C.

We now propose the following procedure for the combina-
tion of hierarchical abstraction and color removal.

1. Remove all redundant colors c 6∈ Ci,∩ from each Gi

and denote the remaining colors by C̃i ⊆ Ci

2. Determine colored observers mΣi→Σi,0
, i = 1, . . . , n

3. Synthesize the supervisor S according to (2) for a
given high-level specification AD,0.

5. APPLICATION EXAMPLE

In this section, we apply hierarchical multitasking control
to the production cell (PC) in Fig. 1, and illustrate the
benefits of removing redundant colors. All computations
are performed using the “multitasking” plugin of the
libFAUDES software library for DES (libFAUDES, 2008).

5.1 General Setup

In addition to the components C1 and M described in
Section 3.1, the PC consists of the conveyor belts C2
and C3, the rotary table RT, and a test unit TU. CMG
models for all components have been determined based on
physical plant events (sensors and actuators). However,
the description in this paper starts with plant models on
the hierarchical level (1) in order to provide a compact
representation. The state counts of the closed-loop CMGs

R
(0)
i , i ∈ C := {C1, C2, C3, M, RT, TU} on the lowest level

(0) are displayed in Fig. 5 (next to the respective CMG).

5.2 Models on Level 1

We model the plant components using the same convention
for event names as in Section 3.1 (see also Fig. 4).

Conveyor belt C2 (G
(1)
C2): C2 allows to transport parts

from C1 to C3 or from C3 to C2 and back to C3 or to C1.
The color C2e requires C2 to always become empty again.

Rotary table RT (G
(1)
RT): RT initially points in the x-

direction. It can turn to the y-direction (RTy) and back
to the x-direction (RTx). RT must always be able to stop
(RTstp) in one of its two positions (color RTs).

Conveyor belt C3 (G
(1)
C3): C3 accepts parts from C2 and

C4, and then delivers them either to C2 or C4. The color
C3e indicates that C3 should always become empty again.

Test unit TU (G
(1)
TU): TU is located between C2 and C3.

It checks parts that travel from C2 to C3 or vice versa, and
decides if they are acceptable (acc) or have to be rejected
(rej). TU keeps track of parts until they leave towards
C1 (c2-1) or C4 (c3-4). By coloring, we ensure that parts
can always be either accepted (A) or rejected (R).
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Fig. 4. Level 1 models of the production cell.

5.3 Hierarchical Supervisor Synthesis

We now perform hierarchical supervisor synthesis accord-
ing to Section 4.2. The hierarchical architecture is pre-
sented in Fig. 5, where gray and white boxes denote closed-
loop CMGs and abstracted plant models, respectively.
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Fig. 5. Hierarchical architecture for the production cell

C2 and RT: A supervisor is designed for the conveyor belt

C2 that is mounted on RT. The specifications M
(1)
C2−RT,1

and M
(1)
C2−RT,2 in Fig. 6 require that only one of the

components is allowed to move, and RT has to turn
according to delivery performed by C1, respectively. The

resulting supervisor R
(1)
C2−RT has 19 states. Its abstraction

G
(2)
C2−RT is shown in Fig. 7.

C2, RT, C3 and TU: The specification M
(2)
C2−C3 ad-

dresses the combined behavior of C2, TU and C3 on level
2 of the hierarchy. It states that accepted parts have to



leave PC via C4, while rejected parts have to pass M and

leave towards C0. The supervisor R
(2)
C2−C3 has 15 states

and contains the redundant colors RTs and C2e. The
abstraction G

(3)
C2−C3 is shown in Fig. 7.

Production Cell: Finally, the overall PC R
(3)
PC is syn-

thesized on level 3 of the hierarchy without an additional
safety specification. Again, one color (Mp) can be removed

such that the abstraction G
(4)
PC in Fig. 7 only contains two

of the originally seven colors. It can for example be used
as a model of the PC in a larger manufacturing system.
The overall closed-loop system represented by

S/G = (‖i∈CR
(0)
i )||R

(1)
C1−M||R

(1)
C2−RT||R

(2)
C2−C3||R

(3)
PC (3)

is SNB and fulfills the given specifications.
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Fig. 6. Safety specifications for the production cell.
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Fig. 7. Hierarchical supervisors for the production cell.

5.4 Performance Comparison

In comparison, a completely monolithic supervisor syn-
thesis results in an overall plant G with 1 133 484 states, a
composed specification with 9 298 states, and a monolithic
supervisor with 17 355 states. In contrast, the hierarchical
synthesis in Section 5.3 comprises a sum of 161 states,
since S/G in (3) need not be composed.

If hierarchical control without removing colors is used, not
only computations for all 7 colors have to be carried out,

but also the resulting high-level models G
(3)
C2−C3 (11 states)

and G
(4)
PC (31 states) are larger. This is due to the fact that

the colored observer condition has to be fulfilled for all
colors.

6. CONCLUSIONS

The results in this paper show how identifying and remov-
ing redundant tasks in multitasking control of DES may
lead to considerable savings in the computational effort
of synthesizing supervisors for this class of systems. The
illustration of the established conditions in the example of
a manufacturing cell puts in evidence the gains we can have
in hierarchical and decentralized control architectures, not
only by the removal of colors in the CMG models of differ-
ent levels in the system hierarchy, but also by the reduction
in the size of the abstracted models as a consequence of
eliminating tasks. Further research currently being carried
out on this subject includes applying the results in a
larger example and deriving algorithmic computations of
maximal sets of redundant classes of tasks.
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