
Control Input Synthesis for Hybrid Systems Using
Informed Search

Klaus Schmidt, James Kapinski, and Bruce H. Krogh
Department of Electrical and Computer Engineering

Carnegie Mellon University
{klaussch|jpk3|krogh}@andrew.cmu.edu

Abstract— We present a method for synthesizing a sequence
of robust control inputs for a class of hybrid systems. Our
goal is the generation of a control sequence that drives the
system from a given initial state set to a pre-specified goal
set without violating constraints on the system state, under
the assumption that the hybrid system is exposed to bounded
disturbances. We use a technique that combines dynamic
programming and informed search. The control sequence
generated by our synthesis procedure is guaranteed to meet
safety requirements. An extension to nonlinear systems is
presented and computational time is compared to a mixed-
integer programming approach for computing an optimal but
non-robust solution to the problem.

I. I NTRODUCTION

We present a technique for synthesizing sequences of
control inputs for discrete-time hybrid systems, which uses a
combination of dynamic programming and informed search.
At the mode-switching level, dynamic programming is used
to determine the best mode-switching sequence that satisfies
constraints on the system behavior. Within each mode, local
vector field behavior within a mode is used to guide an
informed search [13] to find a safe sequence of control
inputs that attempts to follow the dynamic programming
solution. Examples of systems that would benefit from this
type of control sequence synthesis include air traffic control
systems and chemical processes with safety constraints [14],
[3].

Discrete-time synthesis techniques that formulate the
problem as a mixed integer quadratic program (MIQP)
have been examined [3]. These techniques use a numerical
solution of the MIQP problem in a model predictive control
(MPC) feedback loop. This technique does not accom-
modate uncertainties, however, and solving the MIQP is
computationally expensive.

Dynamic programming has been applied to the controller
synthesis problem [1]. The accuracy of the solution found
by dynamic programming depends on the resolution that
is used to partition the state space of the system. The
partitioning of the state space is prohibitive for systems with
a large number of state variables.

This research was supported in part by Ford, the US Defense Ad-
vance Projects Research Agency (DARPA) contract nos. F33615-00-C-
1701 and F33615-02-C-4029, US Army Research Office (ARO) contract
no. DAAD19-01-1-0485, the US National Science Foundation (NSF)
contract no. CCR-0121547, and the Institute of Control Engineering and
Automation at the University of Erlangen-Nuremberg.

A* search techniques, which are a form of informed
search, have been applied to the synthesis problem [5],
[6]. A* search techniques are often inefficient because they
utilize knowledge of local behaviors that do not characterize
the global behavior well.

We present a method that combines dynamic program-
ming, which captures global information, and informed
search, which uses local information to guide the system
from mode to mode. To determine appropriate mode-
switching behavior, we use a Bellman-Ford algorithm. The
solution given by the Bellman-Ford algorithm is used to
guide an informed search within each of the modes [5], [6].
The goal of the informed search in each mode is to find a
path to the next mode, where the next mode is specified by
the Bellman-Ford Solution.

Our informed search employs branch and bound ideas
[12]. We use local vector field information in order to
estimate the cost function for a best first search of the set of
all control sequences. Branch and bound is applied to prune
the search tree of failing sequences. We employ ellipsoidal
reachability concepts to conservatively estimate the set of
reachable states for a given input sequence [10].

We also present a method for applying our technique to
nonlinear systems. The technique is performed on a piece-
wise affine approximation of the nonlinear dynamics, where
the error incurred by the approximation is compensated for
by adding an uncertain input term to the system dynamics.

II. PRELIMINARIES

We consider the following class of switched-mode sys-
tems.

Definition 2.1: A discrete-time switched-mode system
(DSS) is a tupleS = (I,X ,U ,D,X0), where:

- I is the finite set ofmodes;
- X = {Xi}i∈I is a partition of the state spaceRn (i.e.,

⋃

i∈I Xi = R
n andXi

⋂

Xj = ∅ for i 6= j);
- U = {Uj}j∈J , is the collection of input disturbance

sets for each mode, where eachUj is a compact set in
R

m;
- D = {fi}i∈I is the set of dynamics associated with

each mode, wherefi : R
n × R

m → R
n; and

- X0 ⊆ R
n is the set of initial conditions

We assume the continuous dynamics of the DSSs are
linear; that is, for eachi ∈ I, there are matricesAi, Bi

such thatfi(x, u) = Aix + Biu. The input setU is used
to represent a discrete set of inputs with bounded additive
noise, that is, ifu ∈ R

m is a discrete input andV ⊂ R
m

is a bounded input set, thenU ∈ U , where

U =
⋃

v∈V

{u + v}.

Note that the class of DSS systems include piecewise
linearizations of nonlinear systems.

Definition 2.2: A sequence(x0u0x1u1x2, . . .) is a run
of a DSSS if for all k ≥ 0, if xk ∈ Xi, then xk+1 =
fi(xk, uk).

Given a DSSS, a setX ⊂ R
n, and a sequenceπ =

(j0j1 . . . jk), where eachji ∈ J , Reach(X,π) is given by

Reach(X,π) = {x|x = xk+1 for some run ofS

(x0u0 . . . xk+1), where

x0 ∈ X, and eachui ∈ Uji

for 0 ≤ i ≤ k}.

We are interested in solving the following problem.
Definition 2.3: Given a DSSS, a fail setF ⊂ R

n, and a
goal setG ⊂ R

n, the safe synthesis problemis to compute
an input sequenceπ such that the following holds:

• Reach(X0, π) ⊆ G;
• for every prefixπ̂ of π, Reach(X0, π̂) ∩ F = ∅.

In applications, the setF represents some region of
the state space that the system must never enter, such as
a temperature limit in a chemical process or a collision
condition in an air traffic control system. The setG is a
region of the state space that the system must reach, such
as a safe shutdown condition in a nuclear reactor.

We use the following notation in our procedure to com-
pute the reachable states. ForX ⊆ R

n, U ⊆ R
m, andi ∈ I,

Posti(X,U) , {x′|x′ = fi(x, u) for somex ∈ X

andu ∈ U}.

Note that thePosti operator applies the dynamics for mode
i to all states inX and inputs inU , even if these sets
include states and inputs that are not defined for modei.
This freedom will be used to compute over-approximations
to the reachable sets for the DSS.

An ellipsoid E(xc, Q) ⊂ R
n is defined as

E(xc, Q) = {x|(x − xc)
T Q−1(x − xc) ≤ 1},

wherexc ∈ R
n andQ ∈ R

n ×R
n is a symmetric, positive

definite matrix. SinceE(xc, Q) is a closed convex set, it
can be described by its support function

ρ(l|E(xc, Q)) = sup
x∈E(xc,Q)

lT x

= lT xc +
√

lT Ql

III. SAFE SYNTHESIS PROCEDURE

Our method for solving the safe synthesis problem uses
informed search guided by local vector field information.
Since local vector field behavior in one mode is not indica-
tive of the vector field behavior in other modes, a second
technique, dynamic programming, is used to establish a
desired mode switching sequence. This two level approach
is described as follows:

• Construct a graph that represents the approximate time
needed to go from mode to mode with each control,
and find the best mode switching path using dynamic
programming;

• In each mode, starting from the mode that contains the
initial condition set, use an informed search to compute
a path to the next mode, where the next mode is given
by the dynamic programming solution.

A. The dynamic programming step

The dynamic programming step constructs a graph, where
the vertices represent the modes and the edges are labelled
with estimates of the amount of time it takes to travel from
mode to mode. While the safe synthesis problem has no
optimization concept, the minimum time criterion is used
so that the dynamic program finds a useful solution.

Definition 3.1: Given a DSSS, a fail setF ⊂ R
n, and

a goal setG ⊂ R
n, a dynamic programming graph(DPG)

is a tupleG = (M, δ), where

• M = {Mi}i∈I : a set of vertices, one for each mode
in S;

• δ : M × J → M ×R: if input setUj takes the system
from statea to stateb with an estimated cost ofc, we
write δ(Ma, j) = (Mb, c).

Costs for each mode-to-mode transition are computed by
performing simulations from the center points of the modes,
once for each input. The first mode that the simulation
enters determines the destination of the arc in the DPG
and the number of simulation steps it takes determines
the weight. This is similar to techniques used in the dy-
namic programming literature for discretizing continuous
optimization problems [11].

Once the DPG has been constructed, a Bellman-Ford
algorithm is performed on it to produce a functions : M →
M , wheres(m) = m′ means thatm′ is the mode reachable
from modem with the lowest estimated cost-to-go.

B. The informed search step

Starting from the mode that contains the initial condition
set, thes function provides asubgoalto a Search Procedure,
where the subgoal is an intermediate goal that is to be
reached before the overall goal is reached. In each mode, the
subgoal is the optimal next mode as given by the function
s.

Definition 3.2: Given a DSS S, a DSS automaton
(DSSA) forS is a tuple,
D = (Q,Σ, E, λ, ρX , ρU), where

2

• Q - a finite set of states;
• Σ - a finite set of symbols;
• E ⊆ Q × Q - a set of transitions;
• λ : E → Σ∗ - a labelling function that assigns an input

string to each transition;
• ρX : Q → 2CRn - a function that assigns regions in

R
n to each state inQ. CRn denotes the set of compact,

connected subsets ofR
n;

• ρU : Σ → CRm - a function that assigns a region in
R

m to each symbol inΣ.
During the Search Procedure, a DSS automaton will be

constructed whose purpose is to represent the portions of the
state space that have been explored and the input sequences
by which they were reached.

The Search Procedure is shown in Fig. 1. The procedure
assumes that a DSSS, a fail regionF ⊂ R

n and a goal
region G ⊂ R

n are given, and a DPGG and a functions
are provided. Also, we assume that the initial condition set
X0 is an ellipsoidE0.

/* Search Procedure */
Q := q0

Σ := J
E := ∅
ρX(q0) := E0

For all j ∈ J
ρU (j) := Uj

queue := q0

stillworking := 1
While stillworking

/* Find best candidate */
For all q ∈ queue

best := 0
mode := determinemode(D, q)
subgoal := s(mode)
If merit(q,D, subgoal,G) > best

best := merit(q,D, subgoal,G)
bestq := q

/* Expand best q and remove it from the queue */
Removebestq from queue
For all j ∈ Σ

Add q̂j to queue
Add q̂j to Q
Add (q, q̂j) to E
(ρX(q̂j), π) := prop(ρX(q), j)
δ((q, q̂j)) := π
(G, s) := updateDPS(D,G)

If ρX(q̂j) ⊆ G
stillworking := 0

Fig. 1. Informed Search Procedure.

The Search Procedure requires four functions:
determinemode, merit, updateDPS, andprop.

The functiondeterminemode(D, q) returns an identifier
for the mode thatq occupies. This mode is then used to
determine the next subgoal.

The merit(q,D, subgoal,G) function assigns a merit
value to the stateq given the subgoal associated withq. The

merit value is based on an estimate of the minimum time
it will take for the reachable set will enter the goal region,
which is in turn based on a notion of distance between sets
of points. The state with the highest merit value is expanded
by the informed search.

The updateDPS(D,G) function takes the updated
DSSA and performs an update of the DPG and the function
s. Updates of the DPG ands are useful when a state that
has just been added to the DSSA is inside a mode that has
not been reached previously, in which case it is helpful to
recompute the cost estimates from the new mode using a
point inside the region associated with the new stateq, since
this cost estimate will be more accurate than the original
one, which was computed using the center of the mode.

The prop(N , j) function computes a conservative esti-
mate of the reachable set computed from the set of regions
N using the inputj. Fig. 2 presents theprop procedure. The
function first attempts to identify an input stringπ, whereπ

is a string ofj’s of lengthk and1 ≤ k ≤ itermax, such that
the estimate ofReach(E , π), for eachE ∈ N , is completely
within one mode. If such a stringπ does not exist, thenprop

returns a conservative estimate of the reachable set of states
from the regions inN given any input from the setUj .

The function P̂ osti(X,U) computes an estimate of
Posti(X,U) such thatPosti(X,U) ⊆ P̂ osti(X,U). As-
suming all regions are ellipsoidal,̂Posti(X,U) can be com-
puted using the ellipsoidal technique detailed by Kurzhanski
[10]. The bound(N̂) function uses a numerical method,
involving the solution of a linear matrix inequality [4], to
produce one ellipsoid that contains all of the ellipsoids in
N̂ .

/* Procedureprop */
work := 0

N̂ := N
π := ∅
For iter = 1 : itermax

π := π · j

For all Ê ∈ N̂

For all i such thatÊ ∩ Xi 6= ∅

N̂ := N̂ ∪ P̂ osti(Ê , U)

If Ê ⊆ Xi∀Ê ∈ N̂ for somei

N̂ := bound(N̂)
work := 1
break

If ¬work

N̂ := ∅
π := j
For all E ∈ N

For all i such thatE ∩ Xi 6= ∅

N̂ := N̂ ∪ P̂ osti(E , U)

Return N̂ andπ

Fig. 2. Procedure to compute propagation of regions.

3

IV. SWITCHED-MODE APPROXIMATIONS OF NONLINEAR

SYSTEMS

A DSS can be used to approximate a continuous-time,
nonlinear system such that the behaviors of the former
contain the behaviors of the latter. Our synthesis technique
can then be performed on the approximate system to com-
pute safe control sequences for nonlinear systems with state
constraints.

The approximation is performed by first partitioning the
nonlinear system’s state space. Then an affine approxima-
tion of each mode is computed by taking the first two terms
of a Taylor series approximation of the nonlinear vector field
about the center point of each partition element.

Consider a nonlinear vector fieldg(x(t), u(t)) and a
partition of the state spaceX = {xi}i. Let xi ∈ R

n be
the center point of partition elementi, and f̂i(x(t), u(t))
be the affine approximation of the nonlinear vector field
around the pointxi. The affine approximation of the vector
field is converted to a discrete-time, affine update equation
xk+1 = fi(xk, uk) using an Euler approximation.

The maximum error incurred in approximating the non-
linear dynamics is accounted for by adding an uncertainty
term to the update equation. Ifφ(x0, u(t), T) is the solution
to the differential equatioṅx(t) = g(x(t), u(t)) with initial
condition x0 and u(t) = uk for 0 ≤ t ≤ T , fi(x0, u)
is the update equation for partition elementi, x0 is in
elementi, and ‖φ(x0, u(t), T) − fi(x0, uk)‖ ≤ e∗, then
φ(x0, u(t), T) ⊆ fi(x0, u) + V , whereV = E(0, e∗2I).

From the Fundamental Inequality Theorem [9], a bound
on ‖φ(x0, u(t), T) − fi(x0, uk)‖ is given by

‖φ(x0, u(t), T) − fi(x0, uk)‖ ≤
ef

L
(eLT − 1), (1)

where L is the Lipschitz constant ofg in the region of
interest, andef is given by

ef = max
i∈I

max
x∈X̂i,u∈U

‖g(x, u) − f̂i(x, u)‖,

where

X̂i = {x|x = φ(x′, u(τ), t), 0 ≤ t ≤ T, x′ ∈ Xi,

u(τ) ∈ U ∀ 0 ≤ τ ≤ t}.

V. EXAMPLES

The following example illustrates the reason that the
dynamic programming stage of the technique is useful.
Consider a DSSD, wheren = 2 and the state space is
partitioned as shown in Fig. 3. The target mode is labelled
with a G and the dynamics for each mode are given bya

G

x1

x2

a

a

a a a c

b c

da a

1 2 3

1

2

3

4

X0

u1u2

u1
u2

u1
u2

u2

u1 u1 u1

u1

winning path

A* - search
path

Fig. 3. Example illustrating the need for mode switching guidance.

throughd, where

Aa = Ab = Ac = Ad = I

Ba = I

Bb =

[

1 −1
0 0

]

Bc =

[

0 0
−1 −1

]

Bd =

[

0 0
1 1

]

.

The inputs areU = {u1, u2}, whereu1 = (1, 0) andu2 =
(0, 1), and the initial condition set isX0 = {(1.5, 1.5)}.

FromX0, u1 takes the system to(2.5, 1.5) while u2 takes
the system to(0.5, 1.5). The point (2.5, 1.5) is selected
to be expanded because it has a high merit value since
it is heading directly towards the target mode. The point
(0.5, 1.5) has a low merit value because it is moving directly
away from the goal mode. From(2.5, 1.5) both inputs take
the system to(2.5, 0.5), which has a higher merit value
than (0.5, 1.5) since the former is moving away from the
goal region at a slower rate than the latter. From(2.5, 0.5)
both inputs take the system back to(2.5, 1.5). The search
then continues to oscillate between(2.5, 1.5) and(2.5, 0.5)
indefinitely.

This search, which is performed without the benefit of
the dynamic programming solution, does not discover that
the target mode can be reached from point(0.5, 1.5) by
applying the input sequence(u2, u1, u1, u1, u1). Dynamic
programming finds the mode switching sequence that drives
DSSD from the initial mode to the target mode.

As an application, we introduce a conventionally steered
vehicle as an example. Fig. 4 shows the configuration of the
vehicle. The variablesx1 and x2 describe the coordinates
of the rear axis of the vehicle in an inertial frame(X1,X2)
and θ is the heading angle measured with respect to the
horizontal axis. The control inputs are given by the velocity
v of the vehicle and by the steering angleϕ. The constant

4

length of the car isL.

X
2

X
1

q

v

x
1

L

x
2

j

Fig. 4. Conventionally steered vehicle

The nonlinear continuous dynamics of the vehicle are

ẋ1 = v cos θ

ẋ2 = v sin θ

θ̇ =
v tan θ

L

(2)

Using the approximation technique described in Sec. IV, the
switched-mode system representation of the conventionally
steered vehicle is obtained by partitioning the 3-dimensional
state space into boxes of side-length0.4 in each direction
and identifying each partition element with a discrete mode.
The dynamics are converted to discrete-time using a sam-
pling period of0.1 seconds.

The input set is given by {(v, ϕ)|(v, ϕ) ∈
{0.1, 0.6, 1.0} × {− 3

8π,− 3
4π, 0, 3

4π, 3
8π}}, and the

maximum error due to the linearization is bound by
e∗ = 0.0102. The input added in order to account for the
error is given byV = E((0, 0), e∗2I).

In the first example we consider the situation shown in
Fig. 5. The initial set isX0 = E((0, 0, 0), 10−4I) and the
goal (G) and fail (F) regions are hyperboxes as shown
in Figs. 5-(a) and 5-(c). The mode size is 0.4 in each
direction and the origin of the the state space partition is
(−1,−1,−1). The region[−1 1.8] × [−1 1.8] × [−1 2.2]
is considered, which corresponds to 392 partition elements,
resulting in a DPGG with 392 vertices.

Figs. 5-(a) and 5-(b) show the complete DSSA which
was created during the Search Procedure until a good
path to the goal region was found. The mode-switching
sequence proposed by the DPS is indicated by the arrows.
The first subgoal lies to the right of thex1 = 0.2 plane.
The search is guided successfully towards the first subgoal,
and switches into the mode that lies on the other side of
the x1 = 0.2 plane (see Fig. 5-(a)). After that, the DPG
proposes proceeding along theθ direction before entering
the goal region by crossing the planex2 = 0.2.

The fact that no ellipsoid intersects the planex1 =
0.2 indicates that, theprop procedure (see Fig. 2) was
successful in identifying an input sequence such that the
reachable set landed completely inside the second mode of
the given mode sequence. Note that it is not always possible
to identify such an input sequence, in which caseprop

−0.2 0.2 0.6
−0.2

0.2

0.6

F G

x2

x1

−0.6 −0.2 0.2 0.6 1
−0.2

0.2

0.6

1

�

x2

(a) (b)

−0.2 0.2 0.6
−0.2

0.2

0.6
F G

x2

x1

−0.6 −0.2 0.2 0.6 1
−0.2

0.2

0.6

1

�

x2

(c) (d)

Fig. 5. First conventionally steered vehicle example synthesis procedure
results: (a and b) all ellipsoidal regions that were searched projected
onto (a) the first and second dimensions and (b) the second and third
dimensions; (c and d) the reachable set of points along the winning path
and a simulation trace of the winning path from the center of the initial
condition set projected onto (c) the first and second dimensions and (d)
the second and third dimensions.

x1

−0.6 −0.2 0.2 0.6 1 1.4
−0.6

−0.2

0.2

0.6

1
F

F

G

x2

−0.6 −0.2 0.2 0.6 1
 −0.6

−0.2

0.2

0.6

1

x2

�

(a) (b)

Fig. 6. Second conventionally steered vehicle example synthesis proce-
dure results: (a and b) the reachable set of points along the winning path
and a simulation trace of the winning path from the center of the initial
condition set projected onto (a) the first and second dimensions and (b)
the second and third dimensions.

returns a set of ellipsoids that intersect more than one mode,
as in the case shown in Fig. 5-(a) where some ellipsoids
intersect modes on either side of thex2 = 0.2 plane.

Figs. 5-(c) and 5-(d) show the reachable set given by
the input sequence found using the Search Procedure along
with a simulation of the original continuous-time nonlinear
system using the same input sequence starting from the
center of the initial condition set. The points represent the
state of the nonlinear system at the sample instants.

For the second example, shown in Fig. 6, the goal region
is placed further away from the initial region and failure
regions are placed such that the vehicle must move around
them to reach the goal.

The third example, shown in Fig. 7, extends the second
example in that the goal region is now even further away
from the initial region.

5

−0.2 0.2 0.6 1 1.4
−0.6

−0.2

0.2

0.6

1
F

F

G

x1

x2

−0.6 −0.2 0.2 0.6 1
−0.6

−0.2

0.2

0.6

1

�

x2

(a) (b)

Fig. 7. Third conventionally steered vehicle example synthesis procedure
results: (a and b) the reachable set of points along the winning path and a
simulation trace of the winning path from the center of the initial condition
set projected onto (a) the first and second dimensions and (b) the second
and third dimensions.

Table I provides the results of all of the experiments.
The experiments were performed on a Pentium 4, 2.8 GHz
machine, with 512 Meg of RAM, running Windows XP. All
times are given in seconds.

TABLE I

RESULTS OF SYNTHESIS FOR CAR EXAMPLE

convt. vehicle total length DPG search total
example ellipsoids of comp. time comp.

no. searched solution time time

1 53 5 68.6 24.6 93.2
2 82 9 84.0 61.5 145.5
3 144 13 90.1 112.0 202.1

An alternative approach to the problem considered in this
paper, developed by Morari et al., formulates the system as
a mixed logical dynamic (MLD) system [3]. The MLD and
a quadratic cost function are used to formulate an MIQP,
which is then solved using numerical techniques.

The MIQP technique was implemented for the first case
of the conventionally steered vehicle example (the case
shown in Fig. 5). Memory limitations prevented using the
full 392 mode model due to the number of variables and the
number of constraints in the resulting MIQP problem. In-
stead the smaller state space region[−0.2 1.4]×[−0.2 1.4]×
[−0.2 1.4], which corresponds to 64 modes, was considered.
In each mode, the piecewise affine approximation of the
system was computed by linearizing about the center of the
mode and the input pointu = (1, π

4). The resulting MIQP
problem had2406 variables,1242 of which were discrete,
and12885 constraints.

The CPLEX MIQP solver in the TOMLAB optimization
environment was used to perform the optimization [7], [8].
An optimal solution was found in 282.7 seconds.

Our synthesis technique is able to compute a solution
in less time (see Table I) due to the heuristics that we
use, which exploit the nature of the problem (e.g., the
smoothness of the vector field, the grid-like, switched-mode
geometry of the system). It should be noted that there
have been recent results in improving the efficiency of
MIQP based techniques for solving hybrid system synthesis
problems by taking advantage of the problem structure [2].

There are differences in the nature of the solutions found
using our technique and the MIQP technique. The solution
found using the MIQP technique enters the target region
and avoids the fail region given one initial condition, while
our solution is valid for a range of initial conditions.
Furthermore, the MIQP solution does not account for the
error incurred due to the approximation of the vector field.
If applied to the original system, the input sequence found
using the MIQP technique is not guaranteed to avoid the fail
region or to drive the system into the target region. This is in
contrast to our technique, which accounts for approximation
error and which can account for uncertainty in the input.

VI. D ISCUSSION

We have demonstrated a new technique for synthesizing
safe input sequences for hybrid systems, which uses a
combination of dynamic programming and informed search.

An issue that we are currently addressing deals with
the prop function. The complexity of the search procedure
increases when theprop function is unable to identify
control sequences that propagate a reachable set of points
completely across a switching surface. When this happens,
the number of ellipsoids that must be propagated to continue
the search increases. We are currently developing more
efficient methods for propagating reachable regions across
switching surfaces.

REFERENCES

[1] R. Bellman and R. Kalaba.Dynamic Programming and Modern
Control Theory. Academic Press, 1965.

[2] A. Bemporad and N. Giorgetti. A sat-based hybrid solver for optimal
control of hybrid systems. InHybrid Systems: Computation and
Control: 7th International Workshop, pages 126 – 141. Springer-
Verlag Heidelberg, 2004.

[3] A. Bemporad and M. Morari. Control of systems integrating logic,
dynamics, and constraints.Automatica, pages 407–427, 1999.

[4] S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan.Linear Matrix
Inequalities in System and Control Theory, volume 15 of SIAM
Studies in Applied Mathematics. SIAM, 1994.

[5] R. Dechter and J. Pearl. Generalized best-first search strategies and
the optimality of A*. Jounral of the ACM, 32(3):505–536, 1985.

[6] H. Farreny. A generalization for heuristically-ordered search: al-
gorithms ρ, results about termination and admissibility. InIEEE
Conference on Systems, Man, and Cybernetics, pages 1442–1447,
1996.

[7] K. Holmström. Practical optimization with the tomlab environment
in matlab. In42nd SIMS Conference, Porsgrunn, Norway, 2001.

[8] K. Holmström, A. Göran, and M. Edvall. Tomlab /cplex v9.0 users
guide. http://www.tomlab.biz/docs/TOMLABCPLEX.pdf, 2004.

[9] J.H. Hubbard and B.H. West.Differential Equations. Springer-
Verlag, 1991.

[10] A. B. Kurzhanski and I. V́alyi. Ellipsoidal Calculus for Estimation
and Control. Birkhä user, Boston, 1997.

[11] R. Larson. Dynamic programming with reduced computational
requirements.IEEE Transactions on Automatic Control, 10(2):135–
143, April 1965.

[12] E. Lawler and D. Wood. Branch-and-bound methods: a survey.
Operations Research, pages 699–719, 1966.

[13] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach.
Prentice Hall, 2 edition, 2003.

[14] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi. Computational tech-
niques for the verification and control of hybrid systems.Proceedings
of the IEEE, 91(7):986–1001, July 2003.

6

