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Abstract: This paper extends previous results on the hierarchical and decentralized control
of multitasking discrete event systems (MTDES). Colored observers, a generalization of the
observer property, together with local control consistency, allow to derive sufficient conditions
for synthesizing modular and hierarchical control that are both strongly nonblocking (SNB)
and maximally permissive. A polynomial procedure to verify if a projection fulfills the above
properties is proposed and in the case they fail for a given projection an algorithm is proposed to
find an extension of the set of events to be projected, in order to fulfill the sufficient conditions
for SNB and maximally permissive hierarchical control.
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1. INTRODUCTION

Several approaches that combine modular and hierarchical
control have been recently exploited in the literature of
Discrete Event Systems (DES) (Leduc et al., 2005; Hill and
Tilbury, 2008; Feng and Wonham, 2008; Schmidt et al.,
2008; Su et al., 2010). Decomposition and abstraction of
the system models, considered by all those approaches,
allow for the use of efficient computational DES control
synthesis methods which in general provide solutions that
can be implemented by a set of modular supervisors.

In (de Queiroz et al., 2005), a multitasking DES (MTDES)
approach is introduced to deal with the case where mul-
tiple classes of tasks and multiple liveness specifications
are considered in the system. In (Schmidt et al., 2007),
multitasking control is extended with hierarchical and
decentralized ideas. To this end, a colored version of both
natural projections and observers (Wong and Wonham,
2004) is employed such that the resulting hierarchical con-
trol architecture is (strongly) nonblocking (SNB), namely,
nonblocking w.r.t. all classes of system tasks. As a first
contribution of this paper, the sufficient conditions for
SNB control in (Schmidt et al., 2007) are extended by local
control consistency (LCC, (Schmidt and Breindl, 2010))
and mutual controllability (Lee and Wong, 2002) in order
to achieve SNB, maximally permissive hierarchical and
decentralized multitasking control.

In practice, efficient algorithms are needed to verify if the
above conditions hold for given colored projections or to
compute appropriate colored projections. In this sense,
this paper brings two further contributions. First, a condi-
tion to verify the joint colored observer and LCC property
is proposed. This condition is based on a generalization of a
result by Wong and Wonham (2004) to MTDES, and it can

be verified in polynomial time. We then consider the case
where the verification of the colored observer condition
and/or LCC fails for a given projection and propose an
algorithm to find an extension of the set of events to
be projected, in order to fulfill the sufficient conditions
for SNB and maximally permissive hierarchical control.
To this end, we employ a generalization of the event set
extension algorithm in Feng and Wonham (2009) that is
first proposed in (Schmidt and Breindl, 2010).

The outline of the paper is as follows. Basic definitions
and previous work are summarized in Section 2. Section
3 states the conditions for SNB and maximally permissive
control. Algorithms for the verification and computation
of appropriate projections are provided in Section 4. The
results are illustrated by a detailed example in Section 5.

2. PRELIMINARIES

2.1 Basic Notation

For a finite alphabet Σ, the set of all finite strings over
Σ is denoted as Σ∗ and the empty string is ε such that
εs = sε = s for all s ∈ Σ∗. A language over Σ is a
subset L ⊆ Σ∗, and L describes the prefix-closure of L.
The natural projection p : Σ∗ → Σ̂∗, Σ̂ ⊆ Σ is defined
iteratively: (1) let p(ε) := ε; (2) for s ∈ Σ∗, σ ∈ Σ, let
p(sσ) := p(s)σ if σ ∈ Σ̂, or p(sσ) := p(s) otherwise. The
inverse of p is p−1 : Σ̂∗ → 2Σ∗ , p−1(t) := {s ∈ Σ∗| p(s) =
t}. A condition for p that is relevant to this paper is the
observer condition (Wong and Wonham, 2004).

Definition 1. Let L ⊆ Σ∗ be a language and Σ̂ ⊆ Σ.
p : Σ∗ → Σ̂∗ is an L-observer if for all s ∈ L, t ∈ Σ̂∗,
p(s)t ∈ p(L)⇒ ∃u ∈ Σ∗ s.t. su ∈ L ∧ p(su) = p(s)t. (1)



As proposed by de Queiroz et al. (2005), we consider
multitasking DES (MTDES), where each system task is
associated to a color in a color set C. Such MTDES is char-
acterized by its colored behavior ΛC ∈ Pwr(Pwr(Σ∗)×C)
that consists of a set of pairs (Lc(ΛC), c), whereby Lc(ΛC)
represents the strings in the MTDES that complete a
task of color c ∈ C. Similarly, the language marked by
B ⊆ C is LB(ΛC) :=

⋃
b∈B Lb(ΛC), and we say that ΛC

is strongly nonblocking (SNB) w.r.t. B ⊆ C if ∀b ∈ B,
Lb(ΛC) = LC(ΛC). The subset relation ΛB ⊆ ΛC for
two colored behavior ΛB ,ΛC holds if B ⊆ C and for all
b ∈ B, Lb(ΛB) ⊆ Lb(ΛC). We define the colored projection
m : Pwr(Pwr(Σ∗)×C)→ Pwr(Pwr(Σ̂∗)×C) for Σ̂ ⊆ Σ
such that, for ΛC ∈ Pwr(Pwr(Σ∗)×C) and for all c ∈ C:
Lc(m(ΛC)) = p(Lc(ΛC)). Now, the observer condition is
generalized for colored projections.
Definition 2. Let ΛC ∈ Pwr(Pwr(Σ∗)× C) be a coloring
behavior and Σ̂ ⊆ Σ, p, m as above. m is a (colored) ΛC-
observer iff p is an Lc(ΛC)-observer for each color c ∈ C.

Finally, the synchronous composition of MC1 ∈
Pwr(Pwr(Σ∗1)× C1) and NC2 ∈ Pwr(Pwr(Σ∗2)× C2) is
MC1 ||NC2:={(Lc(MC1)||Lc(NC2), c),∀c ∈ C1 ∩ C2}

∪ {(Lc(MC1)||LC2(NC2), c),∀c ∈ C1 − C2}
∪ {(LC1(MC1)||Lc(NC2), c),∀c ∈ C2 − C1}.

We model an MTDES as a colored marking generator
(CMG) H = (Q,Σ, C, δ, χ, q0) with the set of states Q,
the alphabet Σ, the color set C, the transition function
δ : Q × Σ → Q, the marking function χ : Q → Pwr(C)
and the initial state q0. We extend δ to strings in the
usual way, and define the eligible event function Γ :
Q → Pwr(Σ) such that Γ(q) = {σ ∈ Σ|δ(q, σ) exists}
for q ∈ Q. The generated language of H is L(H) :=
{s ∈ Σ∗|δ(q0, s) exists}, the language marked by c ∈ C,
is given by Lc(H) := {s ∈ L(H)|c ∈ χ(δ(q0, s))}, and
the colored behavior of a CMG H is given by ΛC(H) :=
{(Lc(G), c)|c ∈ C}. A formal definition of the synchronous
composition H1||H2 of two CMGs H1 and H2 is given by
de Queiroz et al. (2005). A CMG H is SNB w.r.t. B ⊆ C

if ΛC(H) is SNB w.r.t. B and LB(ΛB(H)) = L(H).

2.2 Multitasking Supervisory Control

Let an MTDES be modeled by a CMGH = (Q,Σ, C, δ, χ, q0)
whose alphabet is partitioned into controllable events Σc

and uncontrollable events Σuc. We assume w.l.o.g. that a
colored specification AD ⊆ Pwr(Σ∗) × D is constructed
from a safety specification K = K ⊆ L(H) and liveness
conditions defined by the color set C and a set of new
colors E s.t. E ∩ C = ∅ and D = C∪̇E as follows.

AD = {(Lc, c)| c ∈ D s.t. Lc = K ∩ Lc(H) for
c ∈ C and Lc ⊆ K for c ∈ E}. (2)

A coloring supervisor S : L(H) → Pwr(Σ) × Pwr(E)
associates to each string of the plant a set of enabled events
and a set of colors (of E) marking the string as a completed
task of these colors. For S(s) = (γ, µ), letR(S(s)) = γ and
I(S(s)) = µ. The events that can occur in S/H after the
occurrence of a string s ∈ L(H) areR(S(s))∩Γ(δ(q0, s)). A
string s ∈ L(S/H) is marked by a color c ∈ C if s ∈ Lc(H)
or by a color e ∈ E if e ∈ I(S(s)). A coloring supervisor
S is admissible if ∀s ∈ L(H), Σuc ∩ Γ(δ(q0, s)) ⊆ R(S(s)),
and SNB if ∀d ∈ D, Ld(S/H) = L(S/H).

A colored specification behavior AD as defined in (2) is
controllable w.r.t. L(H) and Σuc ⊆ Σ if LD(AD)Σuc ∩
L(H) ⊆ LD(AD). The set of all controllable subbehaviors
of AD w.r.t. L(H) and Σuc is denoted as C(L(H)) =
{A′D ⊆ AD|LD(A′D)Σuc ∩ L(H) ⊆ LD(A′D)}. Since
C(L(H)) is closed under arbitrary union (de Queiroz
et al., 2005), there uniquely exists a supremal control-
lable subbehavior of AD w.r.t. L(H) and Σuc. It is
formally defined as SupCSNB(AD, H,D) and can be
computed in O(|AD|2|H|2|D|). A coloring supervisor S
such that ΛD(S/H) = SupCSNB(AD, H,D) exists if
Ld(SupCSNB(AD, H,D)) 6= ∅ for all d ∈ D and is SNB
and maximally permissive.

2.3 Set Theory

We present basic results from set theory as employed by
Feng and Wonham (2009); Wong and Wonham (2004). We
denote E(Q) the set of all equivalence relations on the set
Q. For µ ∈ E(Q), [q]µ is the equivalence class containing
q ∈ Q. The set of equivalence classes of µ is written
as Q/µ := {[q]µ|q ∈ Q} and the canonical projection
cpµ : Q→ Q/µ maps an element q ∈ Q to its equivalence
class [q]µ. Let f : Q → R be a function. The equivalence
relation ker f is the kernel of f and is defined as follows:
for q, q′ ∈ Q,

q ≡ q′ mod ker f ⇔ f(q) = f(q′).
Given two equivalence relations η and µ on q, µ ≤ η, i.e.
µ refines η, if q ≡ q′ mod µ ⇒ q ≡ q′ mod η for all
q, q′ ∈ Q. In addition, we define the meet operation ∧ for
E(Q) as follows. For any two elements µ, η ∈ E(Q), it holds
for all q, q′ ∈ Q that
q ≡ q′ mod (µ ∧ η)⇔ q ≡ q′ mod µ and q ≡ q′ mod η.

Let Q and R be sets and f : Q → 2R be a function.
It is also assumed that ϕ ∈ E(R), and the canonical
projection cpϕ is naturally extended to sets. The equiv-
alence relation ϕ ◦ f on Q is defined for q, q′ ∈ Q by

q ≡ q′ mod ϕ ◦ f ⇔ cpϕ(f(q)) = cpϕ(f(q′)).
Now let fi : Q → 2Q be functions, where i ranges
over an index set I. Then S := (Q, {fi|i ∈ I}) is
called a dynamic system (Wong and Wonham, 2004). The
equivalence relation ϕ ∈ E(Q) is called a quasi-congruence
(QC) for S if

ϕ ≤
∧
i∈I

(ϕ ◦ fi).

The quotient CMG (QCMG)Hµ,Σ̂ = (Y, Σ̂∪{σ0}, ν, C, κ, y0)
of a CMG H = (Q,Σ, δ, C, χ, q0) for an equivalence re-
lation µ ∈ E(Q) and an alphabet Σ̂ ⊆ Σ is introduced
analogous to (Wong and Wonham, 2004). It holds that
Y := Q/µ is the quotient set with the associated canonical
projection cpµ : Q→ Y . The initial state is y0 = cpµ(q0).
Also σ0 6∈ Σ is an additional label and the coloring
function κ : Y → Pwr(C) is defined such that κ(y) =⋃
q∈cp−1

µ (y)(χ(q)). The nondeterministic induced transition

function ν : Y × (Σ̂ ∪ {σ0})→ 2Y of Gµ,Σ̂ is defined as

ν(y, σ) :=


{cpµ(δ(q, σ))|q ∈ cp−1

µ (y)} if σ ∈ Σ̂
{cpµ(δ(q, γ))|γ ∈ (Σ− Σ̂),
q ∈ cp−1

µ (y)} − {y} if σ = σ0.



3. MAXIMALLY PERMISSIVE HIERARCHICAL
MULTITASKING CONTROL

In this section, we extend the SNB hierarchical control as
in (Schmidt et al., 2007) to maximal permissiveness.

3.1 Local Supervisory Control

We consider a system that is modeled by multiple plant
CMGs Hi = (Qi,Σi, Ci, δi, χi, q0,i) with the uncontrollable
alphabets Σi,uc, i = 1, . . . , n such that for all i, j =
1, . . . , n with i 6= j, Σi,uc ∩ (Σj − Σj,uc) = ∅. The overall
plant is H := ||ni=1Hi and the uncontrollable alphabet is
Σuc :=

⋃n
i=1 Σi,uc. The desired system behavior is given

by n local specifications Ai,Di ⊆ Pwr(Pwr(Σ∗i ) × Ci),
i = 1, . . . , n for the local models and a global specification
ÂD ⊆ Pwr(Pwr(Σ̂) × D) that is formulated over the
alphabet Σ̂ ⊆ Σ and the color set D ⊇ ⋃ni=1Di =: D′.

We propose to perform the supervisor synthesis in two
steps. First, supervisors Si : L(Hi) → Pwr(Σi) ×
Pwr(Di − Ci) are designed for the local plant compo-
nents such that ΛDi(Si/Hi) = SupCSNB(Ai,Di , Hi, Di)
for i = 1, . . . , n. Then, the joint behavior of the locally
controlled plants is modeled by G := ||ni=1Si/Hi. It has to
be noted that G is usually not SNB w.r.t. D′, which will
be addressed in the following synthesis step. In addition,
it holds that maximal permissiveness of the control can be
lost by the local synthesis as is stated for the case of a
single marking in (Schmidt and Breindl, 2010).

For illustration, we investigate H1 and H2 in Fig. 1
with the color sets C1 = {c1}, C2 = {c2} and the
uncontrollable events Σ1,uc = Σ2,uc = {α} (controllable
events are marked by a tick). The overall plant H :=
H1||H2 has the color set C := C1 ∪ C2. Then, the local
liveness specification ΛC1(D1||H1) is not controllable w.r.t.
L(H1), whereas ΛC(D1||H) is controllable w.r.t. L(H).
Here, maximal permissiveness is violated since the local
supervisor synthesis lacks the information that α cannot
occur after a ∈ L(H1) because of the synchronization with
H2.

HD1H1 H2

a

a

a
a bbb

ββ
β

β

αα
α

α
α

c1

c1c1 c2

c2

Fig. 1. Illustration of mutual controllability.

This situation can be avoided if the plant components are
mutually controllable (MC) (Lee and Wong, 2002). 1

Definition 3. The CMGs Hi and Hj are MC if
L(Gi)(Σj,u∩Σi) ∩ pΣi∪Σj→Σi(p

−1
Σi∪Σj→Σj

(L(Gj)) ⊆ L(Gi)

L(Gj)(Σi,u ∩ Σj)∩pΣj∪Σi→Σj (p
−1
Σj∪Σi→Σi

(L(Gi)) ⊆ L(Gj)
Lemma 1. Let Hi and Hj be MC for i, j = 1, . . . , n and
write A′D′ := ||ni=1Ai,Di . Then,
SupCSNB(A′D′ , H,D

′) ⊆ ||ni=1SupCSNB(Ai,Di , Hi, Di).

That is, the local control is not conservative if MC is ful-
filled. Moreover, if MC does not hold for two components
Hi and Hj , their composition Hi||Hj can be used in order
to avoid the MC violation.
1 The proofs for all statements are provided in (Schmidt et al., 2010).

3.2 Hierarchical Abstraction

In the second synthesis step, we proceed as in (Schmidt
et al., 2007) to ensure SNB. We compute a high-level plant
Ĥ over an alphabet Σ̂ ⊆ Σ: each locally controlled plant
component Si/Hi is abstracted to the alphabet Σ̂i := Σ̂∩
Σi, i = 1, . . . n. With the set Σi,∩ :=

⋃n
k=1,k 6=i(Σi ∩ Σk)

of shared events of component Hi, it is required that
Σi,∩ ⊆ Σ̂i. Using the natural projections p̂i : Σ∗i → Σ̂∗i , p :
Σ∗ → Σ̂∗ and the colored projections m̂i : Pwr(Pwr(Σ∗i )×
Di) → Pwr(Pwr(Σ̂∗i ) ×Di), m : Pwr(Pwr(Σ∗) ×D′) →
Pwr(Pwr(Σ̂∗)×D′), Ĥ is defined such that

L(Ĥ) = ||ni=1p̂i(L(Si/Hi)) = p(L(G)),

ΛD′(Ĥ) = ||ni=1m̂i(ΛDi(Si/Hi)) = m(ΛD′(G)).

The uncontrollable events are chosen as Σ̂uc := Σuc ∩ Σ̂.

The abstraction process is illustrated on the right-hand
side of Fig. 2. Next, ÂD is used as a high-level specification,
and an SNB coloring high-level supervisor Ŝ : L(Ĥ) →
Pwr(Σ̂)×Pwr(E) for E := D−D′ is computed such that
ΛD(Ŝ/Ĥ) = SupCSNB(ÂD, Ĥ,D). The control action
of the corresponding low-level supervisor S : L(G) →
Pwr(Σ)× Pwr(E) is then defined for each s ∈ L(G) as

S(s) :=
(
Ŝ(p(s)) ∪ (Σ− Σ̂), I(Ŝ(p(s)))

)
.

Thus, the overall closed loop is characterized by L(S/G) =
L(Ŝ/Ĥ)||L(G) and ΛD(S/G) = ΛD(Ŝ/Ĥ)||ΛD′(G).

The control action of S is shown in Fig. 2.

S1/H1

Sn/Hn

(Σ1, D1 ∪ E)

(Σn, Dn ∪ E)

||

Ĥ

m̂1 m̂n

R(Ŝ(p(s))) ∪ (Σ− Σ̂)

I(Ŝ(p(s)))

Ŝ

GS ∩

∩

Fig. 2. Hierarchical and decentralized control architecture.

It is shown by (Schmidt et al., 2007) that the overall
closed loop is SNB if each m̂i, i = 1, . . . , n is a colored
observer. However, that condition is not sufficient for
maximal permissiveness as explained in Fig. 3 with the
CMG G and its abstraction Ĥ over Σ̂ = {α, β, γ}. Here,
the occurrence of γ ∈ Σuc = {β, γ, a, b, d, f} cannot be
disabled in Ĥ, although γ could be prevented in G by
disabling the controllable local events c and g.

G
Ĥ

β

β
α

α

γ

γ
c1

c1
c2

c2a
b

c d

e

f
g

Fig. 3. Violation of maximally permissive control.

To resolve this issue, we show that maximally permissive
control holds if p fulfills the additional requirement of local
control consistency (LCC) (Schmidt and Breindl, 2010).



Definition 4. Let L = L ⊆ Σ∗ be a prefix-closed language,
Σuc be a set of uncontrollable events and Σ̂ ⊆ Σ. The
projection p : Σ∗ → Σ̂∗ is locally control consistent (lcc)
for L and Σuc if for all s ∈ L and for all σuc ∈ Σuc ∩ Σ̂
with p(s)σuc ∈ p(L), it holds that either @u ∈ (Σ − Σ̂)∗

s.t. suσuc ∈ L or ∃u ∈ (Σuc − Σ̂)∗ s.t. suσuc ∈ L.

That is, if there is an uncontrollable extension of a string
p(s) in p(L), not all corresponding extensions of s in the
original language L should contain controllable events such
that it is not possible to locally disable such strings. We
now state the main result of this section.
Theorem 2. If all Hi, Hj , i 6= j are MC, m̂i is an
ΛDi(Si/Hi)-observer and pi is lcc for L(Si/Hi) and Σi,uc,
i = 1, . . . , n, then the overall closed loop Ŝ/Ĥ||(||ni=1Si/Hi)
is SNB and maximally permissive:

∀d ∈ D : Ld
(
ΛD(Ŝ/Ĥ)||ΛD′(G)

)
= L(Ŝ/Ĥ)||L(G),

Λmax := SupCSNB(ÂD||A′D′ , H,D) = ΛD(Ŝ/Ĥ)||ΛD′(G).

Hence, the described hierarchical architecture is suitable
for SNB and maximally permissive control. Moreover, is
has to be noted that our approach directly extends to a
multi-level hierarchy by considering high-level closed loops
as low-level plants for the next hierarchical level.

4. COMPUTATIONS FOR PROJECTIONS

In practice, efficient algorithms are needed to either ver-
ify if the conditions stated in the previous section hold
for given colored projections or to compute appropriate
colored projections. This section addresses both issues for
a CMG H = (Q,Σ, δ, C, χ, q0), the abstraction alphabet
Σ̂ ⊆ Σ, the uncontrollable alphabets Σuc ⊆ Σ and Σ̂uc :=
Σuc∩Σ̂, the natural projection p : Σ∗ → Σ̂∗ and the colored
projection m : Pwr(Pwr(Σ∗)×C)→ Pwr(Pwr(Σ̂∗)×C).

4.1 Verification

We generalize a result by (Wong and Wonham, 2004)
that is stated for a single marking to the case of multiple
markings considered in this paper.
Theorem 3. Let H be a CMG and define the dynamic
system H̃MT = (Q, {∆σ|σ ∈ Σ̂} ∪ {∆c|c ∈ C}) with

∆σ : Q→ 2Q :q 7→ {δ(q, uσu′)|uu′ ∈ (Σ− Σ̂)∗},
∆c : Q→ 2Q :q 7→ {δ(q, u)|u ∈ (Σ− Σ̂)∗ ∧ c ∈ χ(δ(q, u))}.
Denote the coarsest quasi-congruence (QC) for H̃MT as

µ∗MT := sup{µ ∈ E(Q)|µ ≤
∧
σ∈Σ̂

(µ ◦∆σ) ∧
∧
c∈C

(µ ◦∆c)}.

m is a ΛC(H)-observer iff the quotient CMG (QCMG)
Hµ∗MT,Σ̂

is deterministic and without any σ0-transitions.

The quasi-congruence µ∗MT groups states with the same
observed future event extensions (∆σ) and reachable colors
(∆c) in the same equivalence class.

The colored observer verification is illustrated by the CMG
H with the color set C = {c1, c2} in Fig. 4. We first
consider Σ̂1 = {α, β} and determine the dynamic system
H̃1,MT = (Q, {∆α,∆β ,∆c1 ,∆c2}) with the coarsest QC

µ∗1,MT as indicated by the shaded areas in Fig. 4. Here, the
transitions with events in Σ̂1 and colors in C correspond
to the maps ∆σ and ∆c in Theorem 3, respectively. It
can be seen that the corresponding QCMG Hµ1,MT,Σ̂1

contains σ0 transitions such that m1 : Pwr(Pwr(Σ∗) ×
C) → Pwr(Pwr(Σ̂1) × C) is not a ΛC(H)-observer. In
contrast, m2 : Pwr(Pwr(Σ∗)×C)→ Pwr(Pwr(Σ̂2)×C)
with Σ̂2 = {α, β, a, b} is a ΛC(H)-observer.

H
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Hµ∗1,MT,Σ̂1
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Fig. 4. Colored observer verification.

Furthermore, it is shown in (Schmidt and Breindl, 2010)
that LCC can be described by a dynamic system H̃LCC.
Lemma 4. Define the dynamic system H̃LCC = (Q, {∆σ|σ ∈
Σ̂} ∪ {∆σuc,LCC|σuc ∈ Σ̂uc}), with ∆σuc,LCC : Q→ 2Q s.t.

∆σuc,LCC(q) :=


⋃

σ∈Σ̂
∆σ(q) if ∃u ∈ (Σuc − Σ̂uc)∗ s.t.

δ(q, uσuc) exists or @u ∈ (Σ
−Σ̂)∗ s.t. δ(q, uσuc) exists

∅ otherwise.
p is an L(H)-observer and lcc for L(H) and Σuc iff
Hµ∗LCC,Σ0 is deterministic and contains no σ0-transitions,
whereby µ∗LCC is the coarsest QC for H̃LCC.

Theorem 3 and Lemma 4 allow the joint verification of the
colored observer condition and LCC.
Corollary 5. Let H be a CMG, Σuc be the uncontrollable
alphabet and define the dynamic system H̃MT,LCC =
(Q, {∆σ|σ ∈ Σ̂} ∪ {∆c|c ∈ C} ∪ {∆σuc,LCC |σuc ∈ Σ̂uc}).
Let µ∗MT,LCC be the coarsest QC for H̃MT,LCC. Then, m
is a ΛC(H)-observer and p is lcc for L(H) and Σuc iff
Hµ∗MT,LCC,Σ̂

is deterministic and without σ0-transitions.

Hence, it is only required to determine the coarsest QC for
H̃MT,LCC in order to verify the colored observer condition
and LCC which can be done with a complexity of O(|Q|3 ·
|δ|) (Wong and Wonham, 2004), where |Q| and |δ| denote
the number of states and transitions of H, respectively.

4.2 Computation of Projections

We finally consider the case, where the verification of
the colored observer condition and/or LCC according to
Corollary 5 fails for a given CMG H over the alphabet Σ,
an abstraction alphabet Σ̂ ⊆ Σ and a set of uncontrollable
events Σuc ⊆ Σ. Then, it is desired to find an appropriate
extension of Σ̂ in order to fulfill the sufficient conditions
for SNB and maximally permissive hierarchical control.
To this end, we employ the following generalization of the
event set extension algorithm in Feng and Wonham (2009)
that is first proposed in (Schmidt and Breindl, 2010).



Algorithm 1. Input: H, Σ̂

1. Compute the QC µ∗MT,LCC and the QCMGHµ∗MT,LCC,Σ̂
.

2. if Hµ∗MT,LCC,Σ̂
is deterministic without σ0-transitions

return Σ̂
else

event set extension of Σ̂ based on Hµ∗MT,LCC,Σ̂
as

in (Feng and Wonham, 2009) and go to 1.

The algorithm is based on the computation of the QCMG
Hµ∗MT,LCC,Σ̂

that is performed in step 1. Then, either the
verification of the colored observer condition and LCC
according to Corollary 5 is successful and the current
alphabet Σ̂ is returned, or an extension of Σ̂ is required.
In the latter case, the suboptimal event set extension
algorithm in Feng and Wonham (2009) is applied. It adds
events to Σ̂ in order to remove σ0-transitions and resolve
the possible nondeterminism in Hµ∗MT,LCC,Σ̂

. The observer
algorithm iterates until an appropriate alphabet extension
is found. Its complexity is determined by the complexity
O(|Q|4 · |δ|3) of the event set extension.

5. MANUFACTURING SYSTEM EXAMPLE

5.1 Description

We consider a slight modification of the flexible manufac-
turing system (FSM) in (Schmidt et al., 2007). Its aim is
to produce blocks with conical and cylindrical pins from
raw blocks and raw pegs. Fig. 5 gives an overview of the
system and Fig. 6 shows the CMG models of the system
components. Here, C1 and C2 represent conveyor belts
that allow the input of blocks and pegs to the system, M is
a mill that produces a hole in a block, L is a lathe that can
produce a conical or cylindrical pin from a peg and R is a
robot that governs the exchange of parts among the system
components. R is also connected to the conveyor belt C3
and the assembly machine AM. C3 transports cylindrical
pins to the painting device PD, while AM assembles pins
and blocks in order to obtain the ready products that are
indicated by the colors co and cy in HAM. 2

The system restrictions are represented by buffers (B) be-
tween the system components that can hold one part and
should neither overflow nor underflow. In our framework,
they are expressed by colored specification behaviors that
are modeled by the CMGs MBi, i = 1, . . . , 7, in Fig. 7. In
addition, MB3, MB4, MB6 and MB7 introduce restrictions
on the sequential system behavior. The specified colors ei,
i = 1, . . . , 7 require that all buffers can become empty
independently, while the color o in MB3 and MB4 ensures
that parts can be processed simultaneously in M and L.

The synchronous composition of the eight plant CMGs
leads to a CMG H with 3 456 states and color set
C = {co, cy}, and the overall specification behavior is
represented by a CMG M := H||(||7i=1MBi) with 2 560
states and the color set D = {ei|1 ≤ i ≤ 7} ∪
{o, co, cy}. The resulting maximally permissive colored
behavior SupCSNB(ΛD(M), G,D) leads to a monolithic
closed loop with 36 360 states.
2 For a more detailed description, please consult (de Queiroz et al.,
2005; Schmidt et al., 2007).
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Fig. 5. Flexible manufacturing system (FMS) overview.
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MB1

MB2

MB3

MB4

MB5MB6

MB7

c1b1

c2b2

b1r

b2r

b3m mb3

b3r

rb3

rb4

b4rco

b4rcy

b4lco
b4lcy

lb4co

lb4cy

rb5

b5am

rb6am

b6amco

rb6c3

b6amcy

b6c3

c3b6

c3b7

b7c3

b7pd pdb7

e1

e2

e3

e4

e5e6

e7

o
o

o

o

o

Fig. 7. Buffer specifications for the FMS

5.2 Hierarchical Synthesis

We now apply the hierarchical synthesis framework de-
scribed in Section 3 in order to reduce the computational
effort. All computations are carried out by the “multi-
tasking” plug-in of the software library libFAUDES (lib,
2009) for DES. For comparison, we both employ colored
observers and colored observers that additionally fulfill
LCC for the hierarchical abstraction. The hierarchical ar-
chitecture used in this example is shown in Fig. 8, and the
plant components are listed in Table 1. It can be verified
that all components are mutually controllable according
to Definition 3. Regarding the hierarchical synthesis, Ĥi

represents the abstraction of Si/Hi, i = 1, . . . , 7 that is
computed using the algorithm in Section 4.2 for the case
of colored observers and additional LCC. In all cases,



the initial abstraction alphabet for each component is
chosen as the set of shared events with the other com-
ponents/specifications as required in Section 3.2.

S1/H1 S2/H2 S3/H3 S4/H4 S5/H5 S6/H6

S7/H7

S8/H8

Fig. 8. Hierarchy of closed-loop systems.

Table 1. Supervisor computation for the FMS
closed plant specification state count
loop SNB/SNB & LCC
G1 H1 := GC1||GR H1||MB1 18/18
G1 H2 := GC2||GR H2||MB2 18/18
G3 H3 := GM||GR H3||MB3 18/18
G4 H4 := GL||GR H4||MB4 21/21
G5 H5 := GAM||GR H5||MB5 44/44
G6 H6 := GC3||GPD H6||MB7 6/6

G7 H7 := Ĥ5||Ĥ6 H7||MB6 156/184

G8 H8 := ||4i=1Ĥi||Ĥ7 H8 1224/2904

For example, the closed loop S6/H6 for H6 = GC3||GPD

and the specification H6||MB7 is depicted in Fig. 9. Choos-
ing the initial abstraction alphabet Σ̂6 = {b7c3, c3b7}
(shared events with MB6), The computation of a colored
observer and a colored observer with LCC yields the ab-
stractions Ĥ6 in Fig. 9. It can be seen that adding LCC
as a sufficient condition for maximally permissive control
potentially leads to larger abstracted models.

e7 e7e7

S6/H6 Ĥ6 Ĥ6

b7c3

b7c3b7c3

c3b7 c3b7c3b7 c3b8

c3b8

b8c3b8c3

b8pd

pdb8

Fig. 9. G6 and Ĥ6 without (left) and with (right) LCC.

The state counts for the remaining closed loops are listed
in Table 1. In both cases, the plant H8 is already strongly
nonblocking, i.e., no supervisor has to be implemented
on the highest level. Hence, 1 505/3 213 supervisor states
are required to implement the control as opposed to the
36 360 states of the monolithic control. Furthermore, the
trade-off between the size of the abstraction and maximal
permissive control is observed in the component G6. Here,
the abstraction Ĥ6 of C3 and PD loses the information
that a cylindrical pin that is located in PD can be
prevented from moving to B6. Hence, different from the
maximally permissive behavior, no conical pin is allowed
to enter B6 whenever a cylindrical pin is present at PD.

6. CONCLUSION

This paper introduced sufficient conditions for the syn-
thesis of maximally permissive modular supervisors that
respect liveness requirements in a multitasking DES with
a decentralized and hierarchical control architecture. The
conditions apply to natural projections defined over the
modular system models and subsets of their event sets.
Algorithms were provided to check those conditions for
given projections and, in case they fail, modify the projec-
tions by extending their set of projected events, in order

to obtain suitable abstractions. The results have been
illustrated in a multi-level control architecture for a flexible
manufacturing system. Although the above results allow to
synthesize optimal modular supervisors for systems with
a large number of states, we believe that additional gains
could be obtained by additionally eliminating redundant
tasks as discussed in (Schmidt and Cury, 2009). This topic
will be addressed in our future research.
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