Computation of Projections for the
Abstraction-based Diagnosability
Verification

Klaus Schmidt *

* Department of Electronic and Communication Engineering, Cankaya
University, Ankara, Turkey (e-mail: schmidt@cankaya.edu.tr)

Abstract: The verification of language-diagnosability (LD) for discrete event systems (DES)
generally requires the explicit evaluation of the overall system model which is infeasible
for practical systems. In order to circumvent this problem, our previous work proposes the
abstraction-based LD verification using natural projections that fulfill the loop-preserving
observer (LPQO) property. In this paper, we develop algorithms for the verification and
computation of such natural projections. We first present a polynomial-time algorithm that
allows to test if a given natural projection is a loop-preserving observer. Then, we show that,
in case the LPO property is violated, finding a minimal extension of the projection alphabet
such that the LPO condition holds is NP-hard. Finally, we adapt a polynomial-time heuristic
algorithm by Feng and Wonham for the efficient computation of loop-preserving observers.

Keywords: Discrete event systems, failure diagnosis, language-diagnosability, abstraction.

1. INTRODUCTION

The diagnosability verification for discrete event systems
(DES) is based on a plant model that captures potential
faults, a representation of the faulty system behavior and a
characterization of the possible system observations. Then,
it is desired to determine if each fault in the system can
be detected after the occurrence of a bounded number of
events using the available observations.

The diagnosability verification has been investigated in
different frameworks. Sampath et al. (1995) introduce
the characterization of faults by failure events, while
Qiu and Kumar (2006); Yoo and Garcia (2008) study
language-diagnosability, whereby faulty system behavior
corresponds to the violation of a failure specification lan-
guage. In both frameworks, diagnosability is verified in
different architectures such as the centralized architecture
(Sampath et al., 1995; Yoo and Lafortune, 2002; Jiang
et al., 2001; Yoo and Garcia, 2008), the decentralized ar-
chitecture (Su and Wonham, 2005; Wang et al., 2007; Qiu
and Kumar, 2006) or the modular architecture (Contant
et al., 2006; Debouk et al., 2002).

All these methods have in common that they are based on
the explicit computation of the overall system model which
is infeasible for practical systems or they require restric-
tive conditions. To address this issue, our previous work
in (Schmidt, 2010a,b) introduces the idea of abstraction-
based language-diagnosability verification. It is shown that
natural projections that fulfill the loop-preserving observer
(LPO) condition are suitable to compute system abstrac-
tions that allow to verify language-diagnosability using
system models on smaller state spaces.

In this paper, we provide the required algorithmic support
for the verification and computation of appropriate natu-

ral projections. We develop a polynomial-time algorithm
for the verification of LPO. In case LPO is violated, it
is desired to find a minimal extension of the projection
alphabet in order to achieve LPO. In this context, we
first show that the computation of such minimal exten-
sions is NP-hard. Then, an adaptation of the observer
extension algorithm by Feng and Wonham (2010) yields
a polynomial-time heuristic for the computation of loop-
preserving observers in practical cases.

The paper is organized as follows. Section 2 summa-
rizes the notation and definitions required in this paper,
and Section 3 elaborates the abstraction-based language-
diagnosability verification based on natural projections.
The verification of appropriate natural projections that
fulfill LPO is performed in Section 4, while Section 5
develops an algorithm for the computation of such natural
projections. Conclusions are given in Section 6.

2. PRELIMINARIES
2.1 Discrete Event Systems

For a finite alphabet 3, the set of all finite strings over X is
denoted as X*. We write s1s9 € X* for the concatenation
of strings s1, so € ¥* and s; < s when s; is a prefiz of s.
The empty string is € € X%, i.e., se = es = s for all s € ¥*,
and |s| describes the length of s. A language over ¥ is a
subset L C ¥* with the prefiz closure L := {s; € ¥*|3s €
L s.t. s1 < s}. A language L is prefiz closed if L = L.

The natural projection p : ¥* — f]*, 3 C ¥ is defined
iteratively: (1) let p(e) := ¢ (2) for s € ¥*, 0 € X, let
p(so) == p(s)o if ¢ € 3, or p(so) := p(s) otherwise. The
inverse of p is p~' : 3% — 2% p71(t) := {s € X*| p(s) =
t}. A condition for natural projections that is relevant

for prefix-closed languages in this paper is the observer
condition (Wong and Wonham, 2004).

Definition 1. Let L = L C ¥* be a prefix-closed language.
The projection p : ¥* — $3* is an observer for L if for all
sel, teXr,

p(s)t € p(L) = Ju € ¥* s.t. su € L Ap(su) =p(s)t. (1)

We model a DES by an automaton G = (X,3%,0,x0)
with the states X, the alphabet 3, the partial transition
function § : X x ¥ — X and the initial state xo. We write
0(x,0)! if § is defined at (x,0), and extend § to strings
in the usual way. | X| and || characterize the number of
states and transitions of G, respectively. L(G) := {s € £* :
d(zo, s)!} is the language generated by G. The synchronous
composition G1||G3 of two automata G and G5 is defined
as, e.g., in (Cassandras and Lafortune, 2006).

2.2 Language-Diagnosability

Similar to (Qiu and Kumar, 2006; Yoo and Garcia, 2008;
Schmidt, 2010a), we consider a partially observed DES
G = (X,%,8,29). The system behavior is seen through a
mask M : ¥ — AU {e} that maps each event o € ¥ to
its observation M (o) € A U {e} (A is the set of obser-
vations). M is recursively extended to strings by defining
M(so) = M(s)M(o) for s € ¥* and ¢ € %, and %, :=
{o € £|M(0) # €} denotes the set of observable events.

In the described framework, a failure corresponds to the
violation of a given prefix-closed specification language
K = K C L(G). In particular, it is desired to detect if a
faulty string in L(G) — K occurred by partial observation
through the mask M. A formal characterization of this
language-diagnosability is given in the following definition
(Qiu and Kumar, 2006; Yoo and Garcia, 2008).

Definition 2. Let G model a DES and let K = K C L(G)
be a specification language. K is language-diagnosable for
G and the observation mask M : ¥ — AU {e} if

(3n € N)(Vs € L(G) — K)(Vst € L(G), |t| = n or st 9
deadlocks) = (Yu € M~ M(st) N L(G),u ¢ K). 2)

If (2) holds, then every string that deviates from the
correct behavior in K can be uniquely distinguished from
strings in K after the occurrence of a bounded (either by
n or by deadlock) number of events.

2.8 Set Theory

We present basic results from set theory as employed by
Feng and Wonham (2010); Wong and Wonham (2004). We
write £(Q) for the set of all equivalence relations on the set
Q. For p € £(Q), [q], is the equivalence class containing
q € Q. The set of equivalence classes of p is written
as Q/p = {l¢glulg € Q} and the canonical projection
cp, : @ — Q/p maps an element g € @ to its equivalence
class [q],. Let f : @ — R be a function. The equivalence
relation ker f is the kernel of f and is defined as follows.

forq.¢' €Q, ¢=q mod kerf < f(q) = f(q').
Given two equivalence relations n and g on @, p < 7,
i.e. p refines 0, if ¢ = ¢ mod p = ¢ = ¢ mod 7 for all
q,q € @. In addition, we define the meet operation A for

£(Q) as follows. For any two elements p,n € £(Q), it holds
for all ¢,¢' € Q that
qg=¢ mod (uAn) < q=q mod pand ¢ =q mod 7.

Let Q and R be sets and f : Q — 27 be a function. It is
also assumed that ¢ € £(R), and the canonical projection
cp,, is naturally extended to sets. The equivalence relation
po fon Q is defined for ¢,¢' € Q by

q=q mod o fecp,(f(q)=cp,(f(d))

Now let f; : Q — 29 be functions, where i ranges over an
index set Z. Then S := (Q, {fili € I}) is called a dynamic
system (Wong and Wonham, 2004) and the equivalence
relation ¢ € £(Q) is called a quasi-congruence for S if

< N(eo fi).

i€l
The quotient automaton (QA) G, s = (Y, S U {00}, v, 90)
of an automaton G = (X,X,d,29) for an equivalence

relation 1 € £(X) and an alphabet ¥ C ¥ is introduced
as in (Wong and Wonham, 2004). It holds that Y := X/u
is the quotient set with the associated canonical projection
cp, : X — Y. The initial state is yo = cp,,(w0). Also g &
Y is an additional label. The nondeterministic induced
transition function v 1Y x (XU {o¢}) — 2Y of G, is
defined as

{ep,(0(z,0))|z € cpl:l(;Ay)} ifoed
{cp,(0(z,)|y € (B - %),
z €cp, ()}~ {y}

v(y,0) =
if o = op.

We finally relate the verification of the observer condition
to a quotient automaton that is computed for a particular
quasi-congruence (Wong and Wonham, 2004).

Proposition 1. Let G = (X, X, §,) be an automaton and
p : X* — ¥* a natural projection with ¥ C 3. Let
S = (X,{As|o € ¥}) be a dynamic system with

Ay : X — 2% iz — {6(z, uou)|u’ € (-)*}.
Then, the coarsest quasi-congruence

w*i=sup{p € E(X)|p < /\ (no Ay}
aefl
on S exists and can be computed with a complexity of

O(|X|? - |6]). Furthermore, p : ¥* — %* is an observer
for L(G) if and only if the quotient automaton G . g is

deterministic and does not contain any og-transitions. [

Fig. 1 illustrates Proposition 1. Considering the automaton
G and the alphabet 3 = {a, 3,7}, the dynamic system
S is shown in Fig. 1 (b). Here, the shaded boxes indicate
the equivalence classes of the coarsest quasi-congruence p*
on S. Accordingly, Fig. 1 (c) shows the obtained quotient
automaton Gu*,i' Since Gu*ﬁ contains a og-transition,

p:¥* — ¥* is not an observer for L(G).

G . <

Fig. 1. Observer verification: (a) automaton G; (b) dy-
namic system S; (c¢) quotient automaton G5

3. ABSTRACTION-BASED DIAGNOSABILITY
3.1 General Setup

In this section, we outline the concept of abstraction-
based language diagnosability introduced in (Schmidt,
2010a). As discussed in Section 2.2, we use a model G
and an observation mask M. Moreover, we assume that
the specification K C X* can be formulated based on a

reduced specification K’ = K CY* with ¥/ C ¥ s.t.

K = K'||L(G) C L(G).
Then, (Schmidt, 2010a) proposes to use an abstracted
model G over an abstraction alphabet 3 with ¥/ C by C
3 for the verification of language-diagnosability. G is
computed by applying the natural projection p : ¥* — f]*,
and the abstracted specification is K C $* such that

L(G) :=p(L(G)),
R =K' L(G) = p(K).
The abstracted observation mask is M : ¥ — A U {e},

whereby A = {M(0)|o € 3} contains the observations of
events in X, and for all o € ¥, M (o) = M(0o).

That is, the idea of abstraction-based diagnosability veri-
fication is to use the abstracted (and supposedly smaller)
entities G‘, K and M to perform the classical diagnosability
test, whereby certain sufficient conditions have to be met
in order to ensure equivalence to the original diagnosability
test with G, K and M.

3.2 Sufficient Conditions

Based on the abstraction described in the previous section,
Schmidt (2010a) derives sufficient conditions such that
language-diagnosability for an automaton G, an obser-
vation mask M and a reduced specification K’ can be
verified using the abstractions é, M and K. First, M
has to be consistent with the natural projection p, i.e., all
events with the same non-empty observation must either
be retained or removed by the abstraction.

Definition 3. The observation mask M : ¥ — AU{e} with
the set of observable events 3, := {0 € X|M (o) # €} is

consistent with the natural projection p : ¥* — S* if
ceXN, = M 'M(c) C 3.

Second, p has to be a loop-preserving observer (LPO), i.e.,
an observer for L(G) that additionally ensures that any
arbitrarily long strings in L(G) also appear as such strings
in the abstraction p(L(G)).

Definition 4. Let p : ¥* — X* be an observer for L :=
L(G) and let s,t be as in Definition 1. p is an LPO if there
exists an N € N such that for all u € ¥* s.t. su € L and
p(su) = p(s)t it holds that |u] < N(|t] + 1).

It is shown in (Schmidt, 2010a) that the conditions in
Definition 3 and 4 are sufficient for the abstraction-based
language-diagnosability verification.

Theorem 2. Let G be a model automaton, K’ C X" be
a reduced specification and M : ¥ — A U {e} be an
observation mask. We also define CAL K and M as above
for the abstraction alphabet Y with ¥ C 3 C X If

p: X — $* is an LPO and M is consistent with P,
then language-diagnosability of K for G and M implies
language-diagnosability of K := K'||L(G) for G and M,
while G has a smaller state space than G. If additionally
Yo C 2, the reverse implication also holds, i.e., K is

language-diagnosable for G and M if K is language-
diagnosable for G and M.

Hence, language-diagnosability can be confirmed using
only the abstracted model and the violation of language-
diagnosability can be determined if ¥, C 3. More-
over, since the abstracted models are usually considerably
smaller than the original models, computational savings
are achieved by the abstraction-based verification. An ex-
ample of such computation is given in (Schmidt, 2010a).

Theorem 2 is illustrated in Fig. 2. Here, we assume an
observation mask M with M(a) = a, M(8) = S and
M(o) = € for all remaining events. Furthermore, it is
specified that the event b should not occur, i.e., K’ = {€}
for ¥ = {b}. Choosing the abstraction alphabet ¥ =
{a, 8, a,b}, it holds that 3 is consistent with M. Finally,
we use the LPO p : ¥* — * to compute G and a
specification automaton C' with L(C) = K = K'||L(G)
as shown in Fig. 2. Then, language-diagnosability can be
verified for the abstracted system since the occurrence of b
is detected if the substrings Sa or 8 are observed. Hence,
the original system is also language-diagnosable for the
specification K = K'||L(G).

(N

« C «

Fig. 2. Abstraction-based language-diagnosability.

It has to be noted that Schmidt (2010a) focuses on finding
sufficient conditions for the abstraction-based language-
diagnosability verification without providing algorithms
for the verification of the sufficient conditions or the
computation of appropriate natural projections. Solutions
for both issues are derived in the following sections and
constitute the main contribution of this paper.

4. VERIFICATION

4.1 Consistency

First, the consistency of M with p : ¥* — $* has to be
determined. For each observable event in the abstraction
alphabet o € ¥, N Y, it has to be confirmed that there is

no event & ¢ ¥ with the same observation M (&) = M (o).
That is, consistency can be verified in polynomial time
that is bounded by O(|X|?). Also note that, if M is not
consistent with p, then it is sufficient to add all events
that cause the consistency violation to . Hence, in the
following, we assume that M is consistent with p.

4.2 Loop-preserving Observer

Second, it has to be verified if p : ¥* — ¥* is an LPO.
Intuitively, this requires to check if the observer condition

n (1) holds and G has no loops with events in ¥ — 3.
Formally, the verification of the LPO condition is achieved
by Proposition 3. We first recall the notion of a strongly
connected component (Hopcroft and Ullman, 1975).

Definition 5. Let G = (X,%,d,z9) be an automaton. A
subautomaton of G with the states ¢ C X is called
a strongly connected component (SCC) of G if there is
u,u’ € ¥* for all state pairs x,2' € G s.t. §(x,u) = 2’ and
d(¢',u") = x, and for all G’ D G, G’ is not an SCC of G. An
SCC is trivial if it has a single state without any selfloops.
Proposition 3. Let G = (X, X, ,20) be an automaton and
p: X" — X" the natural projection. Furthermore, define
the automaton G = (X, X — X, 0, z¢) s.t. 0 is derived from
0 by simply deleting all transitions with events in . Then,
p is a loop-preserving observer iff (i) p is an observer for

L(G) and (ii) G contains only trivial SCCs.

Proof. “=": Assume that p is an LPO. Then, by Def-
inition 4, p is an observer for L(G). It remains to show
(ii). Assume the contrary, i.e., G contains a loop that
starts from a state x € X s.t. 6(x,u) = = for some string

€ (2—%)*—{e}. Now let & = 6(xg, s) for some s € L(G).
Then, observing that §(x,u) = §(x,u) = x, it holds that
su™ € L(G) for any n € N. In particular, considering the
abstracted string ¢ := p(s), for any N € N there is an
n € Nst. N-(t|+1) <wu:=sv". Hence, p cannot be an
LPO which leads to contradiction.

“«=": Assume that G only contains trivial SCCs and p is
an observer for L(G). To verify that p is an LPO, it has
to be shown that for all w in (1), |u|] < N(|t| + 1) for
some N € N. We prove that this statement is true for
N = |X]| by induction. Initially, let t; = € and sy = e.
Since G only contains trivial SCCs, the longest string
up € (X — 2)* with p(ug) = € can have at most |X| — 1
events. Hence, |ug| < |X|(]t| + 1) = | X|. Now assume that
lugoiuy - - - opug| < |X|(|oyg - - ok +1) for some k € N and

€ (X-%)*, 0, €, and let 0y - - - 00511 € p(L(G)) for
Ok+1 € 3. Then an analogous argument as above shows
that any ugt1 € (X — X)* st ugoy -+ upOpr1Upy1 €
L(G) cannot have more than |X| — 1 events. Hence,
|U00’1U1 R Jkuk0k+1uk+1\ < |X‘(|O’1 cee 0k0k+1| + 1) O

With the result in Proposition 3, the algorithmic verifica-
tion of the LPO condition is performed as follows.

Algorithm 1. Input: automaton GG, abstraction alphabet)

if p: ¥* — ¥* is not an observer for L(G)
return false

Compute G

if G only contains trivial SCCs
return true

else
return false

NO Utk LN+~

Here, line 1 is accomplished by the observer verification
in Proposition 1 that runs with a complexity O(|X|? - |d]).
Furthermore, line 3 takes a complexity of O(|d]), while
line 4 is performed by Tarjan’s algorithm (Hopcroft and
Ullman, 1975) that is bounded by O(]d] 4+ | X|). Together,
the loop-preserving observer verification can be done in
polynomial time with a complexity of O(|X|? - |4]).

4.8 Verification Example

Fig. 3 illustrates the LPO verification in Algorithm 1 for
the example automaton G and the abstraction alphabet

3, = {a,a}. The observer verification in line 1 yields
a positive result. However, GG that is computed in line
3 has a non-trivial SCC (states 2,3,4). Hence, the LPO
verification terminates with a negative result in line 7.

G2

Fig. 3. Illustration of the LPO verification.

In contrast, choosing the abstraction alphabet S =

{a,a,3} (automaton Gs) or 35 = {a,a,c} (automaton
G3) leads to a projection p that fulfills LPO.

5. COMPUTATION OF NATURAL PROJECTIONS

A projection p : ¥* — $* can be used for the abstraction-
based language-diagnosability verification if Algorithm 1
returns a positive result. However, in case LPO fails, an
appropriate extension of the abstraction alphabet has to
be found in order to apply Theorem 2. In this section, we
develop an algorithm that extends a given alphabet such
that the loop-preserving observer condition is fulfilled.

In principle, it is desired to add as few events as possible
to the abstraction alphabet in order to obtain small
abstracted models. In (Feng and Wonham, 2010), an
analogous problem is studied for the observer condition in
(1). It is stated that there is no unique minimal extension
and the problem of finding such minimal extension is NP-
hard. In this paper, we point out that there is also no
unique minimal extension to achieve the LPO property.
Both extensions 35 and Y3 for the example in Fig. 3
constitute minimal extensions of 3. Furthermore, we
show that the problem of finding a minimal extension,
denoted as the MXypo problem, is NP-hard.

5.1 Complexity of the LPO Extension

In order to prove that MX po is NP-hard, we first investi-
gate the non-trivial extension problem (NTXppo) similar
to (Feng and Wonham, 2010) and show that (1) NTXppo
is polynomial-time reducible to MXpo and (2) NTXypo
is NP-complete. Given an automaton G over the alphabet

Y and an abstraction alphabet ¥ C ¥, we say that (G, f))
has a non-trivial extension if there is a ¥/ with 3 cYcy
such that p’ : ¥* — ¥* is an LPO. The goal is to
determine for each pair (G,3) if such extension exists.
Then, we obtain the following result.

Lemma 4. NTXppo is polynomial-time
Proof. Let the algorithm EXT solve MXypo with the
minimal extension ¥’ = EXT(G,¥) for (G,X). Then, the
following polynomial-time algorithm decides NTXpo:

Compute ¥’ = EXT(G,Y)
if ¥’ = X, then return false, else return true

reducible to

N —

In the next step, we show that NTXpo is NP-complete.
On the one hand, NTXypo belongs to the set NP of
nondeterministic polynomial-time problems (Sipser, 2006)
since it can be verified in polynomial time if an alphabet
Y’ is a non-trivial extension for a given pair (G, f]) using
Algorithm 1. On the other hand, we develop a polynomial
time reduction of the known NP-complete problem mono-
tone 3-in-1 SAT (Schaefer, 1978) to NTXppo.

We consider a boolean formula that is given in 3 conjunc-
tive normal form (3cnf) over m variables z1, ...
n
com) = N\ (@i, Vg, V), (3)
r=1

where each clause consists of three non-negated literals
xi,, xj, and xy,, i, jr, ky € {1,...,m}. Then, @ fulfills
monotone 3-in-1 SAT if there is an assignment (b1, ..., by,)
such that ®(by,...,b,,) is true and exactly one literal in
each clause is true.

Proposition 5. Monotone 3-in-1 SAT is polynomial-time
reducible to NTXypo, i.e., NTXypo is NP-complete.

y Tm

q’(ﬂ?l, ve

Proof. We convert each formula ® to an automaton G
over an alphabet ¥ = {a,21,...,2m,c1,...,¢5} such
that the pair (G,3) with ¥ = {¢1,...,¢,} has a non-
trivial extension if and only if ® fulfills monotone 3-
in-1 SAT. To this end, we first construct an automa-
ton G, = (X,,%,,0.,20,) over the alphabet X, =
{a, 2., xj,, xk,, cr } for each clause x;, Vz,;,. Vxk, such that
the pair (G,, %, := {c.}) has the non-trivial extensions
{er, x4}, {cr, xj, } and {c,, g, }, while all other extensions
are either not loop-preserving observers or trivial. Further-
more, we ascertain that an event x; ,x; ,xy, belongs to
the abstraction alphabet if its value is 1. Hence, a non-
trivial extension for G, exists if and only if z; V x;, V xy,
is monotone 3-in-1 SAT. The appropriate automaton G, is
shown in Fig. 4 (a). It can be verified that only the exten-
sions {CTa xi'r‘}7 {CT, xjr}’ {CT7 xkr} and {CTV Lips Ljps Lhp a}
lead to an LPO, whereby the last extension is trivial.
Furthermore, the case where two literals are equivalent
is captured by the automaton in Fig. 4 (b). W.l.o.g. it is
assumed that x; = x, in this construction. If a clause
contains only one literal, then that literal is simply 1.

Fig. 4. (a) and (b) automaton G,; (c) automaton G.

Then, the automaton G = (X, 3,0, x¢) is constructed as
follows. We introduce a new state 2o ¢ |J_; X, and define
X = {zo}Ul,_, X,. Noting that ¥ = |J'_; X,, we define
dsuchthat forallr =1,...,n, §(xg, ¢,) = xo,. Otherwise,
6 follows the transition relations 6., r = 1,...,n. That is,
G is assembled from the automata G,., where the initial

state of each G, is reached from the initial state of G
by the event ¢, as illustrated in Fig. 4 (c). Then, it is
readily observed that a projection p’ : ¥©* — X' with
{c1,...,¢cn} C % is an LPO for L(G) if and only if each
projection p). : ¥* — (X, N¥')* is an LPO for L(G,) for
each r = 1,...,n. But then, the construction of G, from
the clause z; V x; V xj, implies that the alphabet ¥/ is
a non-trivial extension of ¥ = (J'_, 3, = {c1,...,¢,} for
the pair (G,3) if and only if each clause z;, V x5, V Tk, ,
r =1,...,n, is monotone 1-in-3 SAT which is equivalent
to ® being monotone 1-in-3 SAT. Since the construction
of G from & is polynomial in the number of variables and
clauses, NTXy,po is NP-complete. O

Finally, it follows that MXypo is NP-hard.
Theorem 6. MXypo is NP-hard.

Proof. A problem is NP-hard if an NP-complete problem
is polynomial-time reducible to it (Sipser, 2006). Since
NTXy,po is NP-complete with Proposition 5 and MXp po is
polynomial time reducible to MXy po according to Lemma
4, the statement follows.

5.2 Extension Algorithm

Considering Theorem 6, it is not expected to find a
polynomial-time algorithm that computes a minimal ex-
tension for a given pair (G, ﬁ)) Hence, we propose to use
a heuristic algorithm that extends the work by Feng and
Wonham (2010) in order to determine practical alphabet
extensions that meet the LPO property.

We first point out the three possible causes for a viola-
tion of the loop-preserving observer condition using the
example automaton G in Fig. 5 (a). The quasi-congruence
obtained for the abstraction alphabet ¥ = {a, 8,7} is
indicated by the shaded boxes that also represent the
equivalence classes of the corresponding quotient automa-
ton. Then, it can be seen that the LPO condition is
violated because of (i) a silent transition between different
equivalence classes with the event ¢, (ii) a nondetermin-
istic transition to two different equivalence classes with
the event B and (iii) a non-trivial SCC with events in
Y- (states 6, 7, 8). Here, the first two causes result
in a violation of the observer condition and were already
identified by Feng and Wonham (2010). The third cause
is a direct implication of the loop-preserving observer
condition. We now develop appropriate measures in order
to extend the abstraction alphabet 3 such that the loop-
preserving observer condition is fulfilled.

Fig. 5. (a) Violation of LPO; (b) LPO is fulfilled.

A solution for item (i) and (ii) is presented in (Feng and
Wonham, 2010). All events that label silent transitions
have to be added to 3. Furthermore, we use the function
split Y x 2% — {true,false} such that split(y, i])

verifies if the choice of the abstraction alphabet 3 leads
to nondeterminism in state y € Y.! Let D denote the
set of deterministic automata. To address item (iii), we
introduce the function acyclic : D — {true, false} such
that acyclic(G) determines if a given automaton G € D
only has trivial SCCs. Then, we adapt the algorithm in
(Feng and Wonham, 2010) for the LPO computation.

Algorithm 2. Input: G, 3, set ¥/ := %

while 1 R 1
Compute p* for (G,¥') and the quotient G . ¢, 2

Compute Y¢ := {0 € (2 — %)z € X, u,u’ €

(X —=X)* st. @ = d(z,uou’)} (events in local loopsqg 3
if Gu*-ﬁ/ is deterministic, no og-transitions; Yo = 4
return X)
else
Denote ¥ as all events that label silent transitions 6
Set ¥/ =Y UX, 7

Compute N := {y € Y|3o € ¥’ s.t. [n(y,0)| > 1}
(states in G . g, with nondeterministic transitions) 8

Compute Xy = U, ecp-1(my{0 €E = 3 6(x, o)1}
(all events in cosets with potential nondeterminism) 9

Set 3 =Y UXyUXc 10
for each o0 € Xy U X — X 11
Compute G as in Proposition 3 for 3/ — {5} 12
if (Vy € N)split(y, > — {o}) A acyclic(G) 13
Set 3/ := % — {0} 14

It is readily verified that the projection p : ¥* — $/* is an
LPO for L(G) if Algorithm 2 terminates since all causes
for an LPO violation are resolved. It is guaranteed that
the algorithm terminates in at most |% — f)| steps since at
most |~ — 3| events can be added to the initial abstraction
alphabet until the LPO condition is fulfilled. However, it is
not ensured that a minimal abstraction is found, whereas
reasonable abstractions can be computed in practice.

We finally apply Algorithm 2 to the example in Fig. 5
(a) with ¥ = {a, 8,7}. Here, c is added to ¥’ due to the
silent transition (line 6). Furthermore, ¥y = {a,b} and
Yo = {d,e,f} (line 8 and 9). Then, successively, events
from ¥y UXc— X ={a,b,d,e,f} are removed until the
nondeterminism due to the event 8 and the loop with the
states 6, 7, 8 are erased. Depending on the order of removal,

a possible result is ¥’ = {a, 8,7, a, ¢, f} (see Fig. 5 (b)).

6. CONCLUSION

In this paper, we studied natural projections with the
loop-preserving observer property that are suitable for
the abstraction-based language-diagnosability verification.
We first showed that this property can be verified in
polynomial time for a given natural projection. Then,
we considered the case, where it is desired to extend
the projection alphabet of a given natural projection in
order to achieve the loop-preserving observer property.
We proved that finding a minimal alphabet extension is
NP-hard, and developed an algorithm that finds practical
alphabet extensions in polynomial time. All algorithms

! Please consult (Feng and Wonham, 2010) for a detailed descrip-
tion.

presented in this paper are available in the open-source
library 1ibFAUDES for discrete event systems (lib, 2009).

REFERENCES

(2009). libFAUDES - software library for dis-
crete event systems. URL http://www.rt.eei.
uni-erlangen.de/FGdes/faudes/index.html.

Cassandras, C.G. and Lafortune, S. (2006). Introduction
to Discrete FEvent Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

Contant, O., Lafortune, S., and Teneketzis, D. (2006).
Diagnosability of discrete event systems with modular
structure. Discrete Fvent Dynamic Systems: Theory and
Applications, 16, 9-17.

Debouk, R., Malik, R., and Brandin, B. (2002). A modular
architecture for diagnosis of discrete event systems. In
Decision and Control, IEEE Conference on, 417-422.

Feng, L. and Wonham, W. (2010). On the computation
of natural observers in discrete-event systems. Dis-
crete Event Dynamic Systems: Theory and Applications,
20(1), 63-102.

Hopcroft, J.E. and Ullman, J.D. (1975). The design and
analysis of computer algorithms. Addison-Wesley.

Jiang, S., Huang, Z., Chandra, V., and Kumar, R.
(2001). A polynomial algorithm for testing diagnosabil-
ity of discrete-event systems. Automatic Control, IEEE
Transactions on, 46(8), 1318-1321.

Qiu, W. and Kumar, R. (2006). Decentralized failure
diagnosis of discrete event systems. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 36(2), 384-395.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamo-
hideen, K., and Teneketzis, D. (1995). Diagnosability
of discrete-event systems. Automatic Control, IEEE
Transactions on, 40(9), 1555-1575.

Schaefer, T.J. (1978). The complexity of satisfiability
problems. In Proceedings of the tenth annual ACM
symposium on Theory of computing, 216-226.

Schmidt, K. (2010a). Abstraction-based failure diagnosis
for discrete event systems. System € Control Letters,
59, 42-47.

Schmidt, K. (2010b). Abstraction-based verification of
codiagnosability for discrete event systems. to appear
in Automatica. doi:10.1016/j.automatica.2010.06.010.

Sipser, M. (2006). Introduction to the Theory of Compu-
tation. 2nd edition, Course Technology.

Su, R. and Wonham, W.M. (2005). Global and local
consistencies in distributed fault diagnosis for discrete-
event systems. Automatic Control, IEEE Transactions
on, 50(12), 1923-1935.

Wang, Y., Yoo, T.S.; and Lafortune, S. (2007). Diagnosis
of discrete event systems using decentralized architec-
tures. Discrete Event Dynamic Systems, 17(2), 233-263.

Wong, K.C. and Wonham, W.M. (2004). On the compu-
tation of observers in discrete-event systems. Discrete
Event Dynamic Systems, 14(1), 55-107.

Yoo, T.S. and Garcia, H.E. (2008). Diagnosis of behaviors
of interest in partially-observed discrete-event systems.
System €& Control Letters, 57(12), 1023-1029.

Yoo, T.S. and Lafortune, S. (2002). Polynomial time ver-
ification of diagnosability of partially observed discrete-
event systems. Automatic Control, IEEE Transactions
on, 47(9), 1491-1495.

