
Applied Supervisory Control for a Flexible
Manufacturing System

Thomas Moor
∗

Klaus Schmidt
∗∗

Sebastian Perk
∗∗∗

∗ Lehrstuhl für Regelungstechnik, Universität Erlangen-Nürnberg
(e-mail: thomas.moor@rt.eei.uni-erlangen.de)

∗∗ Department of Electronic and Communication Engineering,
Çankaya University, Ankara (e-mail: schmidt@cankaya.edu.tr)

∗∗∗ HYDROMETER GmbH (e-mail: sebastian.perk@hydrometer.de)

Abstract: This paper presents a case study in the design and implementation of a discrete
event system (DES) of real-world complexity. Our DES plant is a flexible manufacturing system
(FMS) laboratory model that consists of 29 interacting components and is controlled via 107
digital signals. We apply a hierarchical and decentralised supervisor design method from earlier
work and implement the resulting supervisors to control the physical plant. Both, design and
implementation are supported by the open-source software tool libFAUDES that is developed at
our institute. The paper includes a detailed discussion on the practical tasks required for the
implementation, and thereby demonstrates that modern synthesis methods from DES theory
can be applied to real-world scenarios.

Keywords: Discrete event systems, supervisory control, manufacturing system, implementation.

1. INTRODUCTION

In this paper, we report on the design and the implemen-
tation of a controller for a laboratory model of a flexible
manufacturing system (FMS). By design we refer to the
application of a methodology that, given the plant dynam-
ics, provides a way to compute controller dynamics such
that the closed-loop provably fulfils a formal specification.
By implementation we refer to the organisation of hard-
and software required to actually run the controller on the
manufacturing system.

Our laboratory model consists of 1 stack feeder (SF), 16
conveyor belts (C), 4 rotary tables (T), 2 rail-transport
units (R), 2 processing stations (M), 2 pushers (P) and
2 roll-conveyors (RC); see Fig. 1. All in all, 57 digital
output and 50 digital input signals are connected to a
standard PC via two digital IO boards. Considering the
clearly observable gap between available methodology and
engineering practice, we employ this example system to
demonstrate that modern methods from discrete event
systems theory can be applied to real world scenarios.

In order to employ an automata-based controller synthesis
technique, we first discuss how digital signals can be
mapped to and from sequences of asynchronous events,
and how the actuator/sensor paradigm translates to the
controllability attribute of events in our setting. As a
result, this step allows us to determine formal models for
the individual plant components in the form of one finite
automaton per component. In this context, it has to be
noted that an overall plant model has an estimated overall
number of 1024 states.

For the controller design, we apply a hierarchical and
decentralized approach developed in our previous work

SF

R

C

T

RC

P

M

Fig. 1. Flexible manufacturing system model.

(Schmidt et al., 2008). Based on individual models per
plant component, a set of supervisors is computed that
leads to safe and live closed-loop behaviour. For the ex-
ample at hand, this method results in 39 supervisors with
an average number of about 100 states each, leading to an
overall closed-loop in the order of 1030 states. The con-
troller synthesis method is supported by the C++-library
libFAUDES that is continuously developed at the Lehrstuhl
für Regelungstechnik, Universität Erlangen-Nürnberg, and
is available for free under terms of the lesser GNU public
license (LGPL); see (libFAUDES, 2006–2010; Moor et al.,
2008).

libFAUDES also supports the physical realisation of the
controller by providing the specialized simulator plug-
in for hardware-in-the-loop simulation of the supervisor

automata in combination with the physical plant. In this
context, it is pointed out that the common model of
discrete time is based on event ordering and has to be
synchronized with physical time, including situations in
which multiple events occur at the same physical time.
We address these issues by defining appropriate execution
semantics.

In summary, our work demonstrates that the application
of the supervisory control theory to practical examples is
by all means feasible, whereby it has to be acknowledged
that profound expertise in the supervisory control of
DES and software support for the entire work-flow are
essential. This observation conforms with related research
efforts that investigate various aspects of the design and
implementation of DES supervisors (Leduc, 1996; Chandra
et al., 2003; Vyatkin et al., 2006; Ljungkrantz et al., 2007)

The paper is organized as follows. In Section 2, we discuss
how the physical plant interface is mapped to an abstract
event-based interface. In Section 3, we develop automata
models for individual plant components as a basis for the
controller design reported in Section 4. The implemen-
tation of the resulting controller to the physical plant is
presented in Section 5 and Section 6 gives conclusions.

2. PHYSICAL PLANT

The laboratory setup implements a closed-loop configu-
ration where a physical plant interacts with a physical
controller via digital input and output signals; see Fig. 2.
In this context, a digital signal is seen as a function with
a Boolean range defined on the continuous time axis. An
arbitrary input signal can be applied to the plant, which
in turn produces a particular output signal. As a physical
system, the relationship between input and output signals
is causal, and, when appropriately modelled, deterministic.
The physical perspective contrasts the perspective com-
monly taken in an automata based controller design, where
component interaction is modelled by the synchronisation
of an abstract sequence of events. In this section, we report
on the hard- and software infrastructure that maps the
signal-based interface to an event-based interface.

Automata model of supervisor components

libFAUDES simulator plug-in

libFAUDES iodevice plug-in

PC operating system, device drivers

PC hardware, incl. IO board

Actuators (input) Sensors (output)

Flexible manufacturing system:

mechanical and electrical components

P
la

n
t

C
o
n
tr

o
ll
er

input output signalssignals

Fig. 2. Schematic of the laboratory setup.

The plant under consideration consists of electrical and
mechanical components that resemble a flexible produc-
tion line; see Fig. 1. An overall number of 25 DC mo-

tors serve as actuators, controlled by two digital signals
each that correspond to clockwise and counterclockwise
operation, respectively. Thus, the plant is controlled by
50 digital input signals. Relevant positions of the various
mechanical components are sensed by 22 switch-keys. In
addition, the plant is equipped with 35 sensors that indi-
cate whether or not a workpiece is at a certain position.
Thus, the plant provides 57 digital output signals for
feedback.

The plant is connected to a standard PC equipped with
two digital I/O boards, adequately wired with the plant
input- and output-signals. A natural translation from a
plant output signal to an event sequence is to generate
sensor events whenever an edge has been detected. Vice
versa, the execution of an actuator event shall clear or
set the level of an plant input signal and thereby im-
pose an edge. This scheme has been implemented in the
libFAUDES iodevice plug-in. At the time of writing, the
plug-in accesses digital signals via the Comedi open-source
device drivers (Comedi, 2008), that support a wide range
of hardware devices. The iodevice plug-in is configured
by defining the correspondence between (a) digital signals
addressed by a pin address, (b) polarity of edges and (c)
symbolic event names.

Note that, independent of the particular software imple-
mentation, there is a principle issue with simultaneous
sensor events: if two edges occur simultaneously, the event
sequence to generate is not uniquely defined. We argue,
that in such a situation the plant model must render any
ordering of physically simultaneous events as possible. A
well designed supervisor will then handle any particular
ordering faithfully. The current version of the iodevice
plug-in implements edge detection by polling the signals at
a configurable sampling rate and writing detected events to
a FIFO buffer. Thus, in addition to the general issue with
simultaneous events, we require that a supervisor must
accept an arbitrary ordering of any two events that follow
each other within less than the sample period. Again, this
can be guaranteed by using an adequate plant model in
the controller design process.

The below Listing 1 shows an example configuration ad-
dressing a rotary table component (T); see Fig. 3. The
rotary table has two defined positions (x-position and y-
position) that are indicated by switch-keys. A DC motor
can be activated via two distinct digital signals for either
clockwise or counter-clockwise operation, directing the ta-
ble towards the y- and x-position, respectively. The device

mv x

y-Position

x-Position

switch-key (tay, tly) switch-key (tax, tlx)

tmvy
ts

ts

Fig. 3. Two defined positions of the rotary table (T).

configuration defines the actuator events tmvx (“move to
the x-position”), tmvy (“move to the y-position”), and ts
(“stop”) to set and clear the two signals accordingly. The
sensor events tax/tlx/tay/tly are defined to indicate the
table to arive/leave the x- or y-position, respectively.

Fig. 4 illustrates the signal levels and event generations of
the rotary table when moving from the y-position to the
x-position. Note that the illustration is idealised in that
the stop event rs is executed instantaneously, i.e. t2 = t3,
where tk denotes the physical time of the k-th event. In
practice, a delay is expected and it is crucial that this delay
is well below the time it would take until rly occurred to
indicate that the table had overrun the switch-key. We
come back to this issue in the following section.

Fig. 4. Mapping signals to events

Listing 1. Example of a device configuration

<DeviceContainer>
”LrtLabSignalIO ”
<Devices>

<ComediDevice>
”LrtLabInputDevice ” ”/dev/comedi0”
<EventConfiguration>

% rotary tab l e a r r i v i n g in x po s i t i o n
” rax”
<Sensor>
<Triggers> 26 +PosEdge+ </Triggers>
</Sensor>
% rotary tab l e l e av i ng x po s i t i o n
” r l x ”
<Sensor>
<Triggers> 26 +NegEdge+ </Triggers>
</Sensor>
[. . . more sensor events . . .]

</EventConfiguration>

</ComediDevice>

<ComediDevice>
”LrtLabOutputDevice ” ”/dev/comedi1”
<EventConfiguration>

% rota t e tab l e c l o ckw i s e
”tmvy”
<Actuator>
<Actions> 38 +Clr+ 36 +Set+ </Actions>
</Actuator>
% rota t e tab l e counter−c l o ckw i s e
”tmvx”
<Actuator>
<Actions> 36 +Clr+ 38 +Set+ </Actions>
</Actuator>
% stop r o ta t i on
” t s ”
<Actuator>

<Actions> 36 +Clr+ 38 +Clr+ </Actions>
</Actuator>
[. . . more actuator events . . .]

</EventConfiguration>

</ComediDevice>

</Devices>
</DeviceContainer>

3. PLANT MODELING

In order to preserve the modular structure of the flexible
manufacturing system, we propose to determine a separate
model for the behaviour of each component. Each model
refers to the corresponding sensor- and actuator events of
the respective component. Optionally, component models
may introduce additional events to simplify the modelling
of component interaction and to support efficient system
abstraction. These additional events are called logical
events. In this section, we continue the rotary table (T)
as an example to present a detailed component model. For
the remaining components we give statistical information.

The automaton GT in Fig. 5 describes the dynamic be-
haviour of T with the relevant sensor- and actuator events
tax, tlx, tay, tly, tmvx, tmvy, and ts, introduced in
the previous section. Actuator events are considered con-
trollable, sensor events as uncontrollable. Furthermore, it
is assumed that T initially holds the y-position, and the
marking captures that it is always desired to reach one of
the defined positions.

The additional event tT represents the passage of time,
and tf indicates the system failure that happens if the ro-
tary table overruns one of the switch-keys. Both events are
logical events and tT is considered to be controllable. In
this regard, the model represents the fact, that a physical
controller can prevent an overrun by immediately stopping
the rotation when the respective position is reached. This
imposes a timing constraint on the implementation of the
controller in that the immediate execution of ts after
tax or tay must not have a delay longer than the time
represented by tT.

The logical events txy and tyx are supposed to initiate the
motion of T directed to the x- and y-position, respectively.
Both events are considered controllable and serve as an
interface to the next higher level in a hierarchical controller
design: a high-level controller shall be able to prevent
a change of position independent of low level realisation
details.

Regarding the software support with libFAUDES, GT is
stored in a specific data structure, and can either be input

GT

tly

tlx

tax

tay

tmvx

tmvx

tmvx tmvy

tmvy

tmvy

ts

ts
ts

ts

ts

ts

txy

tyx

tT

tT

tT

tT

tf

tf

1 2 3 4 5

6 7 8 9

10 11 12 13 14

Fig. 5. Model of the rotary table.

in an XML-based file format or in the graphical user
interface DESTool. A snapshot of the XML file format is
depicted in Listing 2. Here, the notation “+C+” means that
an event is controllable.

Listing 2. Generator file format

<Generator>
” r t3 [0] ”

<Alphabet>
” txy ” +C+ ”tyx” +C+ ”tmvx” +C+ ”tmvy” +C+ ” t s ”
+C+ ”t T” +C+ ”tax ” ” tay ” ” t f ” ” t l x ” ” t l y ”
</Alphabet>

<States>
<Consecutive> 1 14 </Consecutive>
</States>

<TransRel>
1 ”tmvy” 2
1 ”tmvx” 6
[. . . more t r a n s i t o n s . . .]
14 ” t f ” 9
</TransRel>

<In i tStates> 1 </ InitStates>
<MarkedStates> 1 13 </MarkedStates>

</Generator>

The remaining plant components are modeled in an anal-
ogous way. For the entire FMS, we end up with models for
29 components that have a sum of 692 states, 114/100/104
sensor/actuator/logical events and an estimated overall
state space in the order of 1024. For the sake of concise-
ness, we only list the respective state and event counts in
Table 1, complete models can be found on the webpage
(libFAUDES, 2006–2010).

comp. # states # sensors # actuators # logical ev.

SF 14 4 2 1

C 28 3 3 4

T 14 4 3 2

R 34 10 3 10

M 34 4 5 2

P 16 5 3 2

RC 3 2 0 1

Table 1. Properties of the component models.

4. HIERARCHICAL SUPERVISOR SYNTHESIS

After obtaining a comprehensive plant model, we now
address the supervisor computation. In this paper, we
employ the hierarchical and decentralized control approach
by Schmidt et al. (2008). For illustration, we apply this
method to the interconnection subsystem (ICS) in Fig. 6
as a representative part of the FMS.

The ICS consists of the 7 components C5, C8, C9, C12,
C13, T2 and T3 that are modeled analogous to the de-
scription in the previous section and with the statistical
data listed in Table 1. Hence, the overall state space of the
ICS comprises an order of 109 states. From the functional
perspective, the ICS allows the transport of products
among the different parts of the FMS. In particular, 4

C2C3

C4 C5 C6

C8

C9

T2/C12 T3/C13

C15/C16C15/C16

Fig. 6. Interconnection subsystem (ICS).

desired paths of products are shown in Fig. 6. In order to
realize this system behaviour, we follow the hierarchical
and decentralized supervisor synthesis in (Schmidt et al.,
2008; Schmidt and Breindl, 2008) for the synthesis of non-
blocking and maximally permissive supervisors. In the first
step, local supervisors are designed for the respective plant
components. We illustrate this procedure by the rotary
table T2. The plant model GT2 conforms to GT in Fig.
5 (“t” is simply replaced by “t2”) and the specification
CT2 is shown in Fig. 7. It states that T2 has to move
between its defined positions without stopping or changing
the direction of motion. Then, RT2 in Fig. 7 represents the
nonblocking and maximally permissive closed-loop for GT2

and CT2.

CT2 RT2

t2ly

t2lx

t2ax

t2ax

t2ayt2ay

t2mvxt2mvx

t2mvy

t2mvy

t2s

t2s

t2s

t2s t2xy
t2xy

t2yxt2yx

t2T

t2T

11 22 33 4

4 5

5 66 77

88 9

1011

12

Fig. 7. Specification and supervisor for T2.

In the next step, we abstract the obtained closed-loop for
a subsequent supervisor synthesis on the next hierarchical
level (level 1). We use a natural projection pT2 : Σ∗

T2 →

(Σ
(1)
T2)∗ from the original alphabet of GT2 to the abstrac-

tion alphabet Σ
(1)
T2 = {rtyx, rtxy, rs}, resulting in G

(1)
T2 in

Fig. 8. It has to be noted that pT2 fulfills both the marked-
string-accepting (msa)-observer condition (Schmidt et al.,
2008) and local control consistency (Schmidt and Breindl,
2008) in order to guarantee nonblocking and maximally
permissive control.

Next, we perform a joint supervisor synthesis of T2 and
the conveyor belt C12 that is mounted on T2 on level
1 of the supervisor hierarchy. Fig. 8 already shows the

abstracted model G
(1)
C12 of C12 that operates according to

the desired paths in Fig. 6. Here, the logical events c3-12,
c5-12 and c12-4 characterize the transport of products
from/to neighboring plant components, while the actuator
event c12s indicates that C12 stops. The joint specification

C
(1)
T2C12 ensures that T2 and C12 do not move at the

same time, and the respective events in C12 can only

G
(1)
T2

G
(1)
C12

C
(1)
T2C12

R
(1)
T2C12

t2s

t2s

t2s
t2s

t2s

t2s

t2s

t2xy

t2xy

t2xy
t2yxt2yx

t2yx

t2yx c3-12

c3-12

c3-12

c5-12
c5-12

c5-12

c12-4

c12-4

c12-4

c12s

c12s

c12s

c12s

c12s

c12sc12s

1

1

11 2

2

22 3

3

33 4

4

44 5

5

6

6

7 8 9

10

Fig. 8. Hierarchical synthesis for T2 and C12.

happen if T2 is in the correct position. The resulting closed

loop on level 1 is captured by R
(1)
T2C12 in Fig. 8. Then,

according to (Schmidt et al., 2008; Schmidt and Breindl,
2008), the overall nonblocking and maximally permissive

closed loop for T2 and C12 is given by RT2||RC12||R
(1)
T2C12.

The corresponding supervisor hierarchy is depicted by the
shaded box in Fig. 9. Moreover, an analogous synthesis for
the remaining components of the ICS results in the overall
supervisor hierarchy in Fig. 9. Here, the numbers indicate
the state count of the respective closed-loop.

RT2 RC12

R
(1)
T2C12

RC5 RT3 RC13

R
(1)
T3C13

RC9

R
(2)
ICS

10

1214 14

16

17 22 28

48

Fig. 9. Supervisor hierarchy for the ICS.

Regarding the software support, all required operations
are implemented in libFAUDES and can be accessed
via the scripting lanuguage luafaudes of the graphi-
cal interface DESTool. The function SupConNB performs
the nonblocking supervisor synthesis, Project evaluates
the natural projection, IsMarkedStateAccepting and
IsLocallyControlConsistent verify the respective prop-
erties for natural projections, and the computation of
appropriate projections for the hierarchical supervisor syn-
thesis is done by MSAObserverLcc. The following code
illustrates the lua scripting support for the supervisor
synthesis of T2 and C12.

Listing 3. Example Lua code

−− C12 : l o c a l s upe r v i s o r computation
plant = System (”c12 [0] . gen ”)
spec = Generator (” c12 [0] spec . gen”)
supC12 = System ()
SupConNB(plant , spec , supC12)

−− C12 : MSA−observer computation with LCC
alph = EventSet (” c12 [1] o r i g . alph ”)
highC12 = System ()
MsaObserverLcc (sup , sup : Contro l l ab l eEvents () , alph)
Pro j ect (supC12 , alph , highC12)

−− T2 : l o c a l s upe r v i s o r computation
plant = System (” t2 [0] . gen”)
spec = Generator (” t2 [0] spec . gen ”)
supT2 = System ()
SupConNB(plant , spec , supT2)

−− T2 : MSA−observer computation with LCC
alph = EventSet (” t2 [1] o r i g . alph ”)
highC12 = System ()
MsaObserverLcc (sup , sup : Contro l l ab l eEvents () , alph)
Pro j ect (supT2 , alph , highT2)

−− s upe r v i s o r computation C12−T2 on l e v e l 1
P a r a l l e l (highC12 , highT2 , plant)
spec = Generator (” t2c12 [1] spec . gen”)
supC12T2 = System ()
SupConNB(plant , spec , supC12T2)

Following the description in (Schmidt et al., 2008), a
similar synthesis is performed for the remaining plant
components. Together, 39 supervisors on 5 hierarchical
levels are computed, while all sufficient conditions for
nonblocking and maximally permissive control are fulfilled.
The average state size of the resulting supervisors is 100
in contrast to an overall closed loop with an estimated
number of 1030 states. A complete description of the
performed synthesis and the required data and source code
can be found on the libFAUDES webpage (libFAUDES,
2006–2010).

5. IMPLEMENTATION

The implementation of the supervisor design from Sec-
tion 4 amounts to two taks: first, we must simulate the
supervisor dynamics, i.e., the parallel composition of the
39 supervisor components; and, second, we have to syn-
chronize the actuator events and sensor events between
the supervisor and the physical plant by means of the
iodevice plug-in as presented in Section 2. Thus, the overall
configuration can be interpreted as a hardware-in-the-loop
simulation that is realised by the libFAUDES simulator
plug-in for our laboratory setup.

Regarding the first task, the simulator plug-in generates
execution sequences for a set of automata models with syn-
chronous shared events to simulate the common semantics
of the parallel composition, while avoiding explicit enumer-
ation of the overall state set. Considering the hardware-in-
the-loop simulation, the plug-in maps the paradigm of con-
trollable and uncontrollable events to the actual situation
of actuator events, sensor events and logical events. The
mapping is built on two observations. On the one hand,
sensor events are generated spontaneously and must be
accepted as they occur. By the design of our supervisor and
the imposed controllability property, it is guaranteed, that
any sensor event that actually occurs will not be disabled
by the supervisor at the time of its occurance and can
hence be executed by the simulator. On the other hand
actuator events are exclusively controlled by the simulator
and may be executed at any time. Since the execution of an
actuator event amounts to changing signal levels of signals
that are wired to actuators, actuator events are indeed
accepted by the physical plant at any time. Additionally,
in order to obtain a deterministic behaviour, the simulator
imposes restrictions on the execution semantics based on
priorities and event type:

1. if a sensor event is available from the FIFO buffer
for detected events and if it can be executed, do so
instantly and continue with 1.;

2. if one or more actuator or logical events can be
executed, execute the one with the highest priority
instantly and continue with 1.;

3. if a sensor event is available from the FIFO buffer
for detected events that could not be executed in 1.
report a synchronisation error;

4. wait until the next sensor event is reported.

Repeated execution of steps 1. and 2. amounts to executing
all enabled events, where sensor events are put into order
optimistically. Step 3 detects the error case in which
the supervisor does not accept a sensor event that has
been detected in the physical plant. Again, from the
controllability property imposed by our design this error
should not occur. Once execution has reached step 4, only
sensor events are enabled, and hence the controller must
wait until such an event occurs.

The only step that allows time to pass is step 4, all
other steps are meant to take no physical time. However,
in practice a delay is expected. As we have pointed out
by the example of the rotary table (T), physical plant
components may in particular states impose a constraint
on the tolerable amount of delay. If the implementation
violates this constraint by taking too much time to execute
ts after e.g. tay, the plant will issue the sensor event tly
at a time at which the latter is disabled by the supervisor.
This situation is sensed in step 3. and the simulator will
report a synchronisation error. Thus, it s important to
record the tolerable delay during the modelling process
and to carefully evaluate the performance of the controller
hard- and software.

For the overall laboratory experiment, the hardware-in-
the-loop simulation was configured to implement the 39
supervisors computed according to Section 4; see List-
ing 4 for an extract of the configuration file. It could
be observed that the system behaves as desired, i.e.,
all safety specifications were fulfiled and nonblocking
behaviour was confirmed. A video of the closed-loop
system behaviour is available at http://www.rt.eei.uni-
erlangen.de/FGdes/Fischer-technik webpage.mpg. To mon-
itor the controller performance, the current implementa-
tion of the simulator plug-in takes time stamps on entry
and exit of step 4 to report statistical data on the actual
delay. For the configuration at hand, the delay turns out
far below the acceptable maximum and hence is of no
particular concern. In the context of an industrial applica-
tion, however, this topic should be considered more rigidly.
Options include to compile rather than to interpret the
supervisor dynamics, followed by a thorough performance
analysis.

Listing 4. Example of a simulator configuration

<Executor>

% spe c i f y supe r v i s o r models by f i l ename
<Generators>
”R T2 . gen” ”R C12 . gen” ”R T2C12 . gen ”
[. . . more gene r a to r s . . .]

</Generators>

% spe c i f y event p r i o r i t i e s
<SimEventAttributes>
” t1s ” <Priority> 100 </Priority>

” t2s ” <Priority> 101 </Priority>

[. . . more p r i o r i t i e s . . .]
</SimEventAttributes>

</Executor>

6. CONCLUSION

In this paper, we used a realistic example to investigate
the tasks required for the application of the supervisory
control for discrete event systems to a physical plant. In
a first step, the signal-based behaviour of the physical
plant is translated in an event-based behaviour that can
be modeled by finite automata. Then, e.g., hierarchical
and decentralized supervisory control yields supervisors
on small state spaces that have to be executed in parallel
in order to control the overall plant, whereby appropriate
execution semantics of the generated events and a syn-
chronization of the event-based supervisors and the signal-
based physical plant is required. In our laboratory setup,
the software environment libFAUDES supports these tasks,
and thus helps to demonstrate the principle applicability
of modern synthesis methods to real-world systems. Here,
it has to be noted that profound knowledge of the DES
theory and the use of a suitable software tool are essential
in the overall work-flow. Future work will build on this
experience and investigate how the identified tasks can be
integrated in an industrial application context.

REFERENCES

Chandra, V., Huang, Z., and Kumar, R. (2003). Au-
tomated control synthesis for an assembly line using
discrete event system control theory. IEEE Transactions
on Systems, Man, and Cybernetics, Part C, 33(2), 284
–289.

Comedi (2008). Comedi: The control and measurement
device interface handbook. URL www.comedi.org.

Leduc, R.J. (1996). PLC Implementation of a DES Super-
visor for a Manufacturing Testbed: An Implementation
Perspective. M.Sc. Thesis, Dept. of Elec. & Comp.
Engrg., Univ. of Toronto.

libFAUDES (2006–2010). libFAUDES software
library for discrete event systems. URL
www.rt.eei.uni-erlangen.de/FGdes/faudes.

Ljungkrantz, O., Akesson, K., Richardsson, J., and An-
dersson, K. (2007). Implementing a control system
framework for automatic generation of manufacturing
cell controllers. In IEEE International Conference on
Robotics and Automation.

Moor, T., Schmidt, K., and Perk, S. (2008). libFAUDES -
an open source C++ library for discrete event systems.
9th Int. Workshop on Discrete Event Systems, 125–130.

Schmidt, K. and Breindl, C. (2008). On maximal permis-
siveness of hierarchical and modular supervisory control
approaches for discrete event systems. In 9th Int. Work-
shop on Discrete Event Systems, 462–467.

Schmidt, K., Moor, T., and Perk, S. (2008). Nonblock-
ing hierarchical control of decentralized discrete event
systems. Automatic Control, IEEE Transactions on,
53(10), 2252–2265.

Vyatkin, V., Hirsch, M., and Hanisch, H.M. (2006). Sys-
tematic design and implementation of distributed con-
trollers in industrial automation. 633 –640.

