
Systems & Control Letters 59 (2010) 42–47
Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Abstraction-based failure diagnosis for discrete event systems
Klaus Schmidt ∗
Chair of Automatic Control, University of Erlangen-Nuremberg, Cauerstrasse 7, 91058 Erlangen, Germany

a r t i c l e i n f o

Article history:
Received 11 May 2009
Received in revised form
8 September 2009
Accepted 7 November 2009
Available online 22 November 2009

Keywords:
Discrete event systems
Diagnosability
Abstraction

a b s t r a c t

In this paper, we introduce the idea of abstraction-based diagnosability for large-scale composed discrete
event systems that consist of multiple subsystems. To this end, we determine sufficient conditions such
that diagnosability of the original system follows from diagnosability of an abstracted system model
on a smaller state space. In addition, we prove that also the reverse implication is true if an additional
requirement for the abstraction is fulfilled. Then, we show how our method can be applied to compute
abstracted models for the diagnosability verification of composed systems without enumerating the
whole system state space. In this way, considerable computational savings can be achieved as illustrated
by a small manufacturing system example.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Failure diagnosis addresses the problem of identifying and
isolating deviations of the actual behavior of a dynamic system
from its nominal (desired) behavior. In recent years, various
approaches that are based on a discrete event systems (DES)
modeling formalism were developed. It is a basic premise
for the practicability of failure diagnosis that each fault can
indeed be uniquely identified based on the partial observation
of the actual DES behavior and the characterization of the
possibly faulty behavior. In this respect, failure events [1,2] or
language specifications [3–5] are used to represent incorrect system
behavior, and polynomial time algorithms were developed to
solve the associated event diagnosability [6,7,2] or language-
diagnosability [3–5] problems, respectively.
A common shortcoming of these approaches is that they

involve the enumeration of the overall system state space which
makes their application to large-scale systems computationally
infeasible. Hence, it is of immediate practical interest to develop
diagnosability methods that exploit the system structure in order
to avoid the explicit representation of the overall system. Existing
approaches that tackle this problem either rely on sufficient
conditions that cannot be easily verified [8], or require specific
models such as hierarchical finite state machines [9]. In this paper,
wemake use of vertical and horizontal system structure of DES that
consist of multiple subsystems to reduce the computational effort
for the verification of language-diagnosability.
Weproceed as follows. In Section 3.1,we define a diagnosability

problem for an abstraction of the original system model on a
smaller state space. Section 3.2 gives sufficient conditions such
that the solution of this abstraction-based diagnosability problem

∗ Tel.: +49 9131 8527133; fax: +49 9131 8528715.
E-mail address: klaus.schmidt@rt.eei.uni-erlangen.de.

0167-6911/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2009.11.004
implies the solution of the original diagnosability problem, and in
Section 3.3, we identify a case where the reverse implication also
holds. An efficient method for the computation of the abstracted
model without composing the original subsystems is provided in
Section 4.

2. Preliminaries

2.1. Basic notation

For a finite alphabet Σ , the set of all finite strings over Σ is
denoted Σ∗. The empty string is denoted ε ∈ Σ∗. For any string
s ∈ Σ∗, |s| denotes the length of s. A language over Σ is a subset
L ⊆ Σ∗. A language L is prefix-closed if L = L := {s1 ∈ Σ∗| ∃s ∈
L s.t. s1 ≤ s}.
The natural projection p : Σ∗ → Σ̂∗, Σ̂ ⊆ Σ is defined

iteratively: (1) let p(ε) := ε; (2) for s ∈ Σ∗, σ ∈ Σ , let p(sσ) :=
p(s)σ if σ ∈ Σ̂ , or p(sσ) := p(s) otherwise. The inverse of p is
p−1 : Σ̂∗ → 2Σ

∗

, p−1(t) := {s ∈ Σ∗|p(s) = t}.
We model a DES by a finite automaton G = (X,Σ, δ, x0) with

the states X , the alphabet Σ , the partial transition function δ :
X × Σ → X and the initial state x0. We define the closed language
L(G) of G and the synchronous composition G1 ‖ G2 of two automata
G1 and G2 in the usual way [10].

2.2. Language-diagnosability

As in [3,5], we consider a partially observed DES G =

(X,Σ, δ, x0), where the system behavior is seen through a mask
M : Σ → ∆ ∪ {ε} that maps each event σ ∈ Σ to its observation
M(σ) ∈ ∆ ∪ {ε}. Here, ∆ is the set of observations, and we denote
Σo := {σ ∈ Σ |M(σ) 6= ε} as the set of observable events. M can
be recursively extended to strings by definingM(sσ) = M(s)M(σ)
for s ∈ Σ∗ and σ ∈ Σ .

http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:klaus.schmidt@rt.eei.uni-erlangen.de
http://dx.doi.org/10.1016/j.sysconle.2009.11.004

K. Schmidt / Systems & Control Letters 59 (2010) 42–47 43
We represent a failure by the violation of a given prefix-closed
specification language K = K ⊆ L(G). Hence, it is desired
to detect by partial observation through the mask M if a faulty
string in L(G) − K occurred. The following definition of language-
diagnosability as used in [3,5] formalizes this goal.

Definition 2.1 (Language-Diagnosability). Let G model a DES and
let K = K ⊆ L(G) be a prefix-closed specification language. K is
language-diagnosable for G and the observation mask M : Σ →
∆ ∪ {ε} if

(∃n ∈ N)(∀s ∈ L(G)− K)(∀st ∈ L(G), |t| ≥ n or st deadlocks)

⇒ (∀u ∈ M−1M(st) ∩ L(G), u 6∈ K). (1)

The smallest n that satisfies (1) is denoted as the worst-case
detection delay.
If (1) holds, then every string that deviates from the correct

behavior in K can be uniquely distinguished from strings in K after
a finite detection delay, i.e., the occurrence of a bounded number
of events. It is shown in [5] that language-diagnosability can be
verified in polynomial time based on G and an automaton C with
L(C) = K . If G has pG states and qG events, and C has pC states, then
the complexity for this verification is O(pG · q2G · p

2
C).

3. Model abstractions for language-diagnosability

The verification of language-diagnosability addressed in the
previous section depends on the explicit enumeration of the state
space of the automaton G. Hence, a direct application of this
method to systems of industrial size is computationally infeasible.
The aim of this section is to develop an approach that enables the
language-diagnosability verification of large-scale DES.

3.1. Problem statement

Our considerations are based on the model G and the
observation mask M as introduced above. However, different
from [5], we assume the practical case1 where the specification
K ⊆ Σ∗ is not given explicitly but rather evaluated using a reduced
specification K ′ ⊆ Σ ′∗ withΣ ′ ⊆ Σ such that

K = K ′ ‖ L(G) ⊆ L(G). (2)
Instead of verifying language-diagnosability based on G, K and
M as discussed in Section 2.2, we propose to use an abstracted
model Ĝ over an abstraction alphabet Σ̂ ⊆ Σ . Considering that
K ′ ⊆ Σ ′

∗, we also require that Σ ′ ⊆ Σ̂ in order to capture the
relevant behavior specified by K ′. Then, we compute Ĝ by applying
the natural projection p : Σ∗ → Σ̂∗, and use the abstracted
specification K̂ ⊆ Σ̂∗ such that

L(Ĝ) := p(L(G)), (3)

K̂ := K ′ ‖ L(Ĝ) = p(K). (4)

In addition, the abstracted observation mask is M̂ : Σ̂ → ∆̂ ∪ {ε},
where ∆̂ = {M(σ)|σ ∈ Σ̂} contains all possible observations
of events in Σ̂ such that, for all σ ∈ Σ̂ , M̂(σ) = M(σ). A
graphical illustration of the abstractionmethodology in (3) and (4)
is provided in Fig. 1, with K̂ = L(Ĉ).
Using the abstracted entities Ĝ, K̂ , M̂ , we study the following

problem.

Problem 1 (Abstraction-based Diagnosability). Let G be a model
automaton, K ′ ⊆ Σ ′

∗ be a reduced specification and M : Σ →
∆ ∪ {ε} be an observation mask. Defining Ĝ, K̂ and M̂ as above for
the abstraction alphabet Σ̂ with Σ ′ ⊆ Σ̂ ⊆ Σ , we want to find

1 An example of such specification is demonstrated in Section 4.3.
Fig. 1. Abstraction of G and C to obtain Ĝ and Ĉ .

Fig. 2. Counterexample for sufficiency: p is not an observer.

sufficient conditions such that
1. language-diagnosability of K̂ for Ĝ and M̂ implies language-
diagnosability of K := K ′ ‖ L(G) for G andM ,

2. the abstracted model Ĝ has a smaller state space than the
model G.

If condition 1 in Problem 1 holds, it is possible to solve the
language-diagnosability problem by applying the algorithm in [5]
to Ĝ, K̂ and M̂ . Denoting pĜ and qĜ as the number of states and
events of Ĝ, respectively, and pĈ as the state size of the automaton Ĉ
with L(Ĉ) = K̂ , the associated computational complexity is O(pĜ ·
q2
Ĝ
· p2
Ĉ
). Then, condition 2 implies that pĜ is smaller than pG and qĜ

is smaller than qG. Furthermore, using K̂ = K ′ ‖ L(K̂) suggests
that also pĈ is smaller than pC . Together, it is expected that the
computational effort for the evaluation of language-diagnosability
for Ĝ, K̂ and M̂ can be considerably reduced compared to the
verification for G, K andM . The application example in Section 4.3
supports this claim.

Remark 3.1. Note that the abstraction using p : Σ∗ → Σ̂∗ does
not ensure that Ĝ is smaller than the original model G. In the worst
case, the evaluation of p can lead to an exponential increase in the
size of Ĝ compared to G [11].

3.2. Sufficient condition for abstraction-based diagnosability

We first present three counterexamples that lead to a
violation of condition 1 in the problem statement. From these
counterexamples, we deduce a sufficient condition for the natural
projection p that ensures that condition 1 in Problem 1 is satisfied.
Then, we show that this sufficient condition entails the fulfillment
of condition 2 in the problem formulation.
We consider G in Fig. 2 over Σ = {a, b, c, d, e, f, g, h} and

a reduced specification K ′ = {ε, a} over Σ ′ = {a, b}, i.e., the
specification is violated if b occurs. The automaton C generates
the associated specification K = K ′ ‖ L(G) for the model G.
Furthermore, we assume that the observationmaskM is described
by M(a) = M(b) = M(c) = M(d) = M(g) = M(h) = ε
and M(e) = e, M(f) = f. Inspecting the failure string s =
bh ∈ L(G) − K , it is readily observed that st deadlocks for t = ε
but, e.g., u := ag ∈ M−1M(st) ∩ L(G) and u ∈ K . Hence,
with Definition 2.1, language-diagnosability of K for G and M is
violated. Next, we investigate the abstractions of G and K that are
obtained with (3) and (4) using the abstraction alphabet Σ̂ =
{a, b, e, f} ⊇ Σ ′. It turns out that the abstracted specification
K̂ is language-diagnosable for the abstracted model Ĝ and the
abstracted observation mask M̂ (M̂(a) = M̂(b) = ε, M̂(e) = e,

44 K. Schmidt / Systems & Control Letters 59 (2010) 42–47
Fig. 3. Counterexample for sufficiency: p is not a loop-preserving observer.

M̂(f) = f). In this example, condition 1 in Problem 1 is violated
since the abstracted model Ĝ indicates that the event f is always
possible after the string b occurred, neglecting the local deadlock
state after the string bh in G.
A property of the natural projection p that effectively avoids the

problem described in the above example is the observer property.
It was introduced in the context of hierarchical supervisory
control [12] in order to achieve consistency between the original
system model and its abstraction. In this paper, we employ the
observer property for abstraction-based diagnosis.

Definition 3.1 (Observer [12]). Let L = L ⊆ Σ∗ be a prefix-closed
language. The projection p : Σ∗ → Σ̂∗ is an observer if for all
s ∈ L, t ∈ Σ̂∗,

p(s)t ∈ p(L)⇒ ∃u ∈ Σ∗ s.t. su ∈ L and p(su) = p(s)t. (5)

In words, the observer property requires that if the projection
p(s) of a string s ∈ L can be extended by a string t in p(L), then there
must be a corresponding string u that projects to t and extends s
in L.
In the next example, we investigate the situation in Fig. 3. G is

defined over Σ = {a, b, c, d, e, f} and the reduced specification
is K ′ = {ε, a} over Σ ′ = {a, b} such that C generates the
specification language K = K ′ ‖ L(G).M is given such thatM(a) =
M(b) = M(c) = M(d) = ε andM(e) = e,M(f) = f. Considering
the faulty string b ∈ L(G) − K , it holds that an arbitrarily long
string can occur before the failure can be distinguished from the
correct behavior due to the loop with c and d between the states 3
and 5. Thus, language-diagnosability is violated. On the other hand,
using Σ̂ = {a, b, e, f} ⊇ Σ ′, it can be verified that language-
diagnosability holds for K̂ , Ĝ and M̂ . In this case, condition 1 in
Problem1 is not fulfilled since the projection p erases the local loop
with the events c, d 6∈ Σ̂ .
In order to address the problem identified in the previous

example, we introduce a stronger version of the observer property
in Definition 3.1. In addition, the natural projection p must not
erase any loop of events inΣ − Σ̂ .

Definition 3.2 (Loop-preserving Observer). p in Definition 3.1 is a
loop-preserving observer for L with the bound N if for all u in (5),
|u| < N|t|.

That is, a loop-preserving observer ensures that any loops in the
original model G also appear as loops in the abstracted model Ĝ.
In the final example, we study the case where different events

generate the same observation via the maskM . Fig. 4 shows G and
C with L(C) = K = K ′ ‖ L(G) for the reduced specification K ′ =
{ε, a} over Σ ′ = {a, b}. In addition, M fulfills M(a) = M(b) = ε,
M(c) = M(d) = m1 andM(e) = M(f) = m2. Then it holds for any
extension of the faulty strings b, bd, bdf ∈ L(G)− K that they are
indistinguishable from the correct stringsa,ac orace. This implies
that K is not language-diagnosable for G andM .
However, choosing Σ̂ = {a, b, c, e, f} ⊇ Σ ′, K̂ is language-

diagnosable for Ĝ and M̂ which again violates condition 1 in
Problem 1. In this example, the problem is that although one
event (c) with the observation m1 is kept in Σ̂ , another event
(d) with the same observation is projected away. Since this
Fig. 4. Counterexample for sufficiency: Σ̂ is not consistent withM .

contradicts the semantics of the observation mask (c and d cannot
be distinguished according toM), we require that the choice of the
abstraction alphabet Σ̂ is consistent with the observation maskM
in the sense that

σ ∈ Σ̂ ∩Σo ⇒ M−1M(σ) ⊆ Σ̂ . (6)
We are now ready to state a sufficient condition that solves
Problem 1.

Theorem 3.1 (Abstraction-basedDiagnosability). Problem1 is solved
if p is a loop-preserving observer and Σ̂ is consistent with M.

Proof. We first assume that K̂ is language-diagnosable for Ĝ and M̂
with theworst-case detectiondelay n̂, and show thatK is language-
diagnosable forG andM by contradiction. Hence,we assume thatK
is not language-diagnosable for G andM . Then, w.l.o.g., there exists
s ∈ L(G) − K with st ∈ L(G) such that (i) |t| > n := N · n̂ or
(ii) st deadlocks in G, but there exists u ∈ M−1M(st) ∩ L(G) s.t.
u ∈ K . Then, it holds that ŝ := p(s) ∈ L(Ĝ) − K̂ and ŝt̂ :=
ŝp(t) ∈ L(Ĝ). We now investigate the cases (i) and (ii). Here,
p̂ : ∆∗ → ∆̂∗ denotes the natural projection from observations
over∆ to observations over ∆̂.
In case (i), Definition 3.2 implies that |t̂| > n̂ since p is

a loop-preserving observer with bound N . Furthermore, u ∈
p−1p(u) ⊆ p−1M̂−1M̂p(u), and with consistency of Σ̂ for M ,
p−1M̂−1M̂p(u) = p−1M̂−1p̂M(u) = p−1M̂−1p̂M(st) = p−1M̂−1

M̂p(st) = p−1M̂−1M̂(ŝt̂). Hence, û ∈ M̂−1M̂(ŝt̂). Together, this
shows that ŝ ∈ L(Ĝ) − K̂ , ŝt̂ ∈ L(Ĝ), |t̂| > n̂ but there is û ∈
M̂−1M̂(ŝt̂) ∩ L(Ĝ) s.t. û ∈ K̂ , i.e., K̂ is not diagnosable for Ĝ and M̂ .
In case (ii), st deadlocks in G. If |t̂| > n̂, the discussion for case

(i) shows that the assumption that K is not diagnosable for G and
M leads to contradiction. Otherwise, since p is a loop-preserving
observer, also ŝt̂ deadlocks in Ĝ. That is, we have ŝ ∈ L(Ĝ)− K̂ , ŝt̂ ∈
L(Ĝ), ŝt̂ deadlocks in Ĝ but there is û ∈ M̂−1M̂(ŝt̂)∩ L(Ĝ) s.t. û ∈ K̂ .
Hence, in both cases, diagnosability of K̂ for Ĝ and M̂ is contra-

dicted.
To address condition 2 in Problem 1, we note that it is shown

in [11] [Theorem 3.1.1] that the abstraction Ĝ cannot have a larger
state space than the original model G if the projection p is an ob-
server.2 �

Remark 3.2. Note that the application of the above theorem relies
on finding a subset Σ̂ ⊆ Σ such that the projection p is a
loop-preserving observer. In the scope of this paper, we briefly
describe an iterative approach to determining Σ̂ based on an initial
abstraction alphabet Σ̂init.3 We first suggest to use the observer
extension algorithm in [14] (complexity O(p4G · q

3
G)) in order to

find a projection p̄ : Σ∗ → Σ̄∗, Σ̂init ⊆ Σ̄ , that fulfills the
observer property in Definition 3.1. As a result, the state space of
the model G is partitioned into equivalence classes such that each
equivalence class corresponds to a unique state in the abstracted
model Ĝ. Now, it holds that p̄ is a loop-preserving observer, if
the subautomata of G that correspond to the different equivalence

2 In practical examples, a considerable reduction is reported [13].
3 SinceΣ ′ ⊆ Σ̂ for K ′ ⊆ Σ ′ , a valid choice for the initial alphabet is Σ̂init = Σ ′ .

K. Schmidt / Systems & Control Letters 59 (2010) 42–47 45
Fig. 5. Counterexample:Σo is not a subset of Σ̂ .

classes do not contain any strongly connected components (SCCs),
i.e., there are no cycles with events in Σ − Σ̄ . If this condition is
violated, it is necessary to extend the abstraction alphabet further
in order to remove existing SCCs. Appropriate events for such
extension are events on transitions that do not belong to the
maximum acyclic subgraph (MAS) of the subautomaton of G, which
can be approximated with complexity O(pG · qG) [15]. Since Σ is
finite, an iterative application of the observer extension algorithm
and the maximum acyclic subgraph algorithm lead to a loop-
preserving observer pwith complexityO(qG) · (O(p4G · q

3
G)+O(pG ·

qG)) = O(p4G · q
4
G). The abstraction-based language-diagnosability

verification is implemented as part of the libFAUDES software
library for DES [16].

3.3. Equivalence of abstraction-based diagnosability

Theorem 3.1 is beneficial if the abstraction-based language-
diagnosability holds. However, if this verification fails, it cannot
be concluded whether language-diagnosability for the original
system is fulfilled or not. In this section, we identify a case such
that both verifications are equivalent.
We study G in Fig. 5 with the reduced specification K ′ = {ε, a}

overΣ ′ = {a, b}.M is defined byM(a) = M(b) = ε andM(c) =
c, M(d) = d, M(e) = e. Then, it can be observed that K =
K ′ ‖ L(G) is language-diagnosable for G and M . Now assume that
the abstraction alphabet Σ̂ = {a, b, e} ⊇ Σ ′ is chosen. In this
case, all possible extensions of the failure strings b, be cannot
be distinguished from the correct strings a, ae, i.e., K̂ = K ′ ‖
L(Ĝ) is not language-diagnosable for Ĝ and M̂ . Here, language-
diagnosability for the abstraction fails since the observable events
c and d, that allow us to distinguish failure strings from correct
strings, are not included in Σ̂ .
In accordancewith the above example, the next theorem shows

that the reverse implication of Problem 1, condition 1 holds if all
observable events inΣo belong to Σ̂ , i.e., all possible observations
are retained in the abstraction.

Theorem 3.2 (Equivalence). Consider the situation in Theorem 3.1. If
Σo ⊆ Σ̂ , it holds that K̂ is language-diagnosable for Ĝ and M̂ iff K is
language-diagnosable for G and M.

Proof. ‘‘⇒’’: This implication holds because of Theorem 3.1.
‘‘⇐’’: We have that Σo ⊆ Σ̂ and K is diagnosable for G

and M with the worst-case detection delay n. We show that K̂ is
diagnosable for Ĝ and M̂ by contradiction.W.l.o.g., we assume that,
for n̂ = n, there is ŝ ∈ L(Ĝ)− K̂ and ŝt̂ ∈ L(Ĝ) s.t. (i) |t̂| > n̂ or (ii)
ŝt̂ deadlocks in Ĝ but there is û ∈ M̂−1M̂(ŝt̂) ∩ L(Ĝ) s.t. û ∈ K̂ .
In case (i), there is s ∈ p−1(ŝ)∩L(G) and t ∈ p−1(t̂) s.t. st ∈ L(G).

Since ŝ ∈ L(Ĝ) − K̂ , also s ∈ L(G) − K . Furthermore, since n̂ = n,
|t| > n. Considering that û ∈ M̂−1M̂(ŝt̂) ∩ L(Ĝ) and û ∈ K̂ , there
is u ∈ p−1(û) s.t. u ∈ L(G) and u ∈ K = K ′ ‖ L(G) = K̂ ‖ L(G).
Now, Σo ⊆ Σ̂ implies that also u ∈ p−1(û) ⊆ p−1M̂−1M̂(ŝt̂) =
p−1M̂−1M̂p(st) = M−1M(st) (here, we use the fact that Σ0 ⊆ Σ̂

implies M(s) = M̂p(s) for all s ∈ Σ∗). Hence, we found s ∈
L(G) − K , st ∈ L(G), |t| > n and u ∈ M−1M(st) ∩ L(G) s.t. u ∈ K
which contradicts that K is diagnosable for G andM .
In case (ii), since p is a loop-preserving observer, there is s ∈

p−1(ŝ) ∩ L(G) and t ∈ p−1(t̂) s.t. st ∈ L(G) deadlocks in G (if
Fig. 6. Model abstraction for composed systems.

no such st exists, ŝt̂ cannot deadlock in Ĝ). If |t| > n, the same
argument as in case (i) leads to contradiction. Otherwise, we have
s ∈ L(G) − K , st deadlocks in G but analogous to case (i) we can
find u ∈ M−1M(st) ∩ L(G) s.t. u ∈ K which contradicts that K is
diagnosable for G andM . �

4. Language-diagnosability for composed systems

The approach presented in the previous section allows us to
verify language-diagnosability based on the abstracted model Ĝ
which is expected to result in computational savings. However,
the construction of Ĝ still requires the enumeration of the state
space of the original model G. In this section, the practical situation
with system models that are composed of multiple subsystems is
considered. It is shown that Ĝ can be efficiently computed using
abstractions of the subsystem models.

4.1. Model abstractions for composed systems

We assume that the system model G is composed of several
subsystems Gi = (Xi,Σi, δi, x0,i), i = 1, . . . ,m such that G :=
‖
m
i=1 Gi over the alphabet Σ :=

⋃m
i=1Σi (see the lower part of

Fig. 6). In addition, a reduced specification K ′ ⊆ Σ ′∗ describes the
correct system behavior, and partial observation is possible via the
observation maskM : Σ → ∆ ∪ {ε}.
In order to exploit the composed structure of themodel, we first

compute abstractions Ĝi of the subsystems Gi using abstraction
alphabets Σ̂i ⊆ Σi withΣi ∩Σ ′ ⊆ Σ̂i and the natural projections
pi : Σ∗i → Σ̂∗i , i = 1, . . . ,m such that L(Ĝi) = pi(L(Gi)). Then, the
abstracted subsystems are composed to obtain

Ĝ = ‖mi=1 Ĝi (7)

over the alphabet Σ̂ :=
⋃m
i=1 Σ̂i as illustrated in the upper part of

Fig. 6.
Our main goal is again the solution of Problem 1.

4.2. Conditions for language-diagnosability

We consider the general case where subsystems are allowed to
share events, i.e., it is possible thatΣi ∩Σj 6= ∅ for i, j = 1, . . . ,m,
i 6= j. The set of shared events is Σi,∩ :=

⋃
j6=i(Σi ∩ Σj) for each

subsystem Gi.
The following theorem states sufficient conditions that reduce

the solution of Problem 1 with the abstracted model Ĝ according
to (7) to the results obtained in Sections 3.2 and 3.3.

Theorem 4.1 (Composed Systems). Let Gi, pi, i = 1, . . . ,m, and p,
Σ̂ be defined as in Section 4.1. Problem 1 is solved if 1. Σi,∩ ⊆
Σ̂i for i = 1, . . . ,m, 2. pi is a loop-preserving observer for all
i = 1, . . . ,m, 3. Σ̂ =

⋃m
i=1 Σ̂i is consistent with M. Furthermore,

equivalence holds if Σo ⊆ Σ̂ .

Conditions 1 and 2 in Theorem 4.1 ensure that only computa-
tions on the subsystems have to be carried out. Hence, instead of
the overall model G, only the abstracted model Ĝ on a potentially
smaller state space has to be constructed. Consequently, both the

46 K. Schmidt / Systems & Control Letters 59 (2010) 42–47
verification of abstraction-based language-diagnosability in Sec-
tion 3 and the proposed abstractionmethod for composed systems
in Section 4.1 result in computational savings.
The proof of Theorem 4.1 relies on the following lemmas.

Lemma 4.1 is adopted from [10] [Exercise 3.3.7], while Lemma 4.2
constitutes a new result.

Lemma 4.1. Let Σi, pi, Σ̂i, i = 1, . . . ,m and p be defined as above.
Furthermore, assume that Li ⊆ Σ∗i and Σi,∩ ⊆ Σ̂i for i =
1, . . . ,m. Then, it holds that p(‖mi=1 Li) = ‖

m
i=1 pi(Li). In particular,

this implies for Gi, Ĝi and G as above that p(L(G)) = p(‖mi=1 L(Gi)) =
‖
m
i=1 pi(L(Gi)) = ‖

m
i=1 L(Ĝi).

Lemma 4.2 (Loop-preserving Observer). Let Gi, pi, i = 1, . . . ,m, and
G, p be defined as above. Then p is a loop-preserving observer for G
with the bound N :=

∑m
i=1 Ni if pi is a loop-preserving observer for

Gi with the bound Ni for i = 1, . . . ,m.
Proof. Assume that pi is a loop-preserving observer for Gi for i =
1, . . . ,m and let s ∈ L(G), t ∈ Σ̂∗ s.t. p(s)t ∈ p(L(G)). It has to be
shown that there is u ∈ Σ∗ s.t. su ∈ L(G) and p(su) = p(s)t , and
that for all such u, |u| < N|t|.
We define the natural projections θi : Σ∗ → Σ∗i and θ̂i : Σ̂

∗
→

Σ̂∗i . Since s ∈ L(G), si := θi(s) ∈ L(Gi) for i = 1, . . . ,m. Similarly,
with ti := θ̂i(t), pi(si)ti ∈ pi(L(Gi)). Hence, for all i, there is a
ui ∈ Σ∗i s.t. siui ∈ L(Gi) and pi(siui) = pi(si)ti. Then, according to
Lemma 4.1, p(‖mi=1 ui) = ‖

m
i=1 pi(ui) = ‖

m
i=1 ti =

⋂m
i=1 θ̂

−1
i (ti) 6= ∅.

In particular, since t ∈ ‖mi=1 ti, there must be u ∈ ‖
m
i=1 ui s.t.

p(u) = t . Observing that s ‖mi=1 ui ⊆ ‖
m
i=1 siui ⊆ L(G), it also holds

that su ∈ L(G). It remains to show that for all such u, |u| < N|t|.
By assumption, we know that for all i, |ui| < Ni|ti|. Furthermore,
u ∈ ‖mi=1 ui implies that |u| ≤

∑m
i=1 |ui|. Hence, |u| <

∑m
i=1 Ni|ti| ≤∑m

i=1 Ni|t| = N|t|. �

Based on the above lemmas, Theorem 4.1 can be proved.
Proof. We first show sufficiency by verifying that the condi-
tions in Theorem 3.1 are fulfilled. Because of Lemma 4.1, the ab-
stracted plant in (7) generates the same language as Ĝ in (3),
i.e., ‖mi=1 pi(L(Gi)) = p(L(G)). Furthermore, Lemma 4.2 implies that
p is a loop-preserving observer, and Σ̂ is consistent withM by as-
sumption.
Finally, with Σo ⊆ Σ̂ , equivalence directly follows from

Theorem 3.2. �

Remark 4.1. Note that, in the case of composed systems as in the
above theorem, the initial alphabet for computing loop-preserving
observers as described in Remark 3.2 is given byΣi,∩ ∪ (Σi ∩ Σ ′)
for each i = 1, . . . ,m.

4.3. Application example

We study a small manufacturing unit that is part of a laboratory
model at the Chair of Automatic Control, University of Erlangen-
Nuremberg. It consists of a stack feeder (SF) and a conveyor belt
(C1) as depicted in Fig. 7. The SF comprises a tower that can
hold wooden parts and a belt that can move parts until they
reach the neighboring conveyor belt C1, which is described by the
unobservable event pass. A light barrier detects if parts arrive at
or leave the belt of SF which is modeled by the events sfa and
sfl, respectively. In addition, the belt of the SF can start and stop
moving (events sfmv and sfs). Its motion is initiated by the event
sf-c1 that is sharedwith C1. The desired behavior of SF according
to a supervisor design in [13] is given by the subautomaton of
GSF in Fig. 8 that consists of the states with a white background.
Similarly, the desired behavior of C1 is characterized by GC1. After
the transport of a part is initiated by sf-c1, C1 starts to move
(c1mv) and the part reaches C1 after some time (pass). As soon
as the part arrives at the sensor of C1 (c1a), C1 stops (c1s) and
Fig. 7. Stack feeder (SF) and conveyor (C1): front view and side view.

Fig. 9. Abstracted model and specification for language-diagnosability.

becomes ready for a new transport whenever the part is removed
from C1 (c1l).
One possible failure occurs if a part gets stuck between SF and

C1. In SF, we characterize this failure by the unobservable event
stuck that can occur after the part has left the sensor (sfl) and
before it reaches C1 via pass (shaded states of GSF in Fig. 8). In C1,
the failure occurrence is modeled by a timer that elapses if the part
does not arrive on time (timer in GC1).
We define the reduced specification K ′ = {ε} over the

alphabetΣ ′ = {stuck, timer} to capture that stuck and timer
should not occur. Furthermore, the observation mask is given by
M(stuck) = M(pass) = ε, while all remaining events can be
directly observed.
In the next step, we choose the abstraction alphabets Σ̂SF =

{sf− c1, pass, stuck} ⊇ ΣSF,∩ and Σ̂C1 = {sf− c1, pass,
timer} ⊇ ΣC1,∩ for ΣSF ,∩ = ΣC1,∩ = {sf− c1, pass}. Both
natural projections pSF and pC1 are loop-preserving observers as
can be seen by the respective abstractions ĜSF and ĜC1 in Fig. 8.
Noting that alsoM is consistent for Σ̂ = Σ̂SF∪Σ̂C1, all conditions in
Theorem 4.1 are fulfilled. Hence, it is sufficient to verify language-
diagnosability based on Ĝ = ĜSF ‖ ĜC1 and K̂ = K ′ ‖ L(Ĝ) = L(Ĉ)
as shown in Fig. 9. Since each failure string in L(Ĝ) − K̂ can be
uniquely distinguished from correct strings in K̂ , K̂ is language-
diagnosable for Ĝ and M̂ , which implies language-diagnosability
for the original system with G = GSF ‖ GC1, K = K ′ ‖ L(G) and
M . However, using the abstraction, the enumeration of the overall
model G with 37 states and the overall specification C with 24
states is avoided, and the language-diagnosability verification can
be carried for the considerably smaller abstracted model Ĝ with 5
states and the automaton Ĉ for the abstracted specification with 2
states.

5. Conclusion

In this paper, the idea of abstraction-based language-
diagnosability was introduced in order to avoid the enumeration
of the overall system state space for the diagnosability verifica-
tion of discrete event systems. To this end, a version of the observer
condition that is originally used in the abstraction-based supervi-
sory control was adopted to compute an abstracted system model
on a smaller state space. Then, sufficient conditions for the verifi-
cation of language-diagnosability using the abstracted model were
developed, and it was proved that abstraction-based diagnosabil-
ity and diagnosability for the original system are equivalent if all
possible observations are retained in the abstractedmodel. Finally,
the practical case of large-scale DES that are given in the form of
multiple subsystemmodels was considered. It was shown that the

K. Schmidt / Systems & Control Letters 59 (2010) 42–47 47
Fig. 8. Original subsystem models and abstractions for SF and C1.
model abstraction can be applied to the subsystems instead of the
overall systemwhich can result in considerable computational sav-
ings. The benefits of the proposed method were illustrated by a
manufacturing unit.

References

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, D. Teneketzis,
Diagnosability of discrete-event systems, IEEE Transactions on Automatic
Control 40 (9) (1995) 1555–1575.

[2] S. Hashtrudi Zad, R. Kwong, W. Wonham, Fault diagnosis in discrete-event
systems: Framework and model reduction, IEEE Transactions on Automatic
Control 48 (7) (2003) 1199–1212.

[3] W. Qiu, R. Kumar, Decentralized failure diagnosis of discrete event systems,
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans 36 (2) (2006) 384–395.

[4] C. Zhou, R. Kumar, R. Sreenivas, Decentralizedmodular diagnosis of concurrent
discrete event systems, in: Discrete Event Systems, International Workshop
on, 2008, pp. 388–393.

[5] T.-S. Yoo, H.E. Garcia, Diagnosis of behaviors of interest in partially-observed
discrete-event systems, System & Control Letters 57 (12) (2008) 1023–1029.

[6] S. Jiang, Z. Huang, V. Chandra, R. Kumar, A polynomial algorithm for testing
diagnosability of discrete-event systems, IEEE Transactions on Automatic
Control 46 (8) (2001) 1318–1321.
[7] T.-S. Yoo, S. Lafortune, Polynomial time verification of diagnosability of
partially observed discrete-event systems, IEEE Transactions on Automatic
Control 47 (9) (2002) 1491–1495.

[8] S. Takai, A sufficient condition for diagnosability of large-scale discrete
event systems, in: International Technical Conference on Circuits/Systems,
Computers and Communications, 2008, pp. 321–324.

[9] A. Paoli, S. Lafortune, Diagnosability analysis of a class of hierarchical state
machines, Discrete Event Dynamic Systems 18 (3) (2008) 385–413.

[10] W.M. Wonham, Supervisory control of discrete-event systems, Depart-
ment of Electrical and Computer Engineering, University of Toronto, URL
http://www.control.utoronto.ca/DES.

[11] K.C. Wong, On the complexity of projections of discrete-event systems, in: In
IEE Workshop on Discrete Event Systems, 1998, pp. 201–208.

[12] K.C. Wong, W.M. Wonham, Hierarchical control of discrete-event systems,
Discrete Event Dynamic Systems: Theory and Applications 6 (3) (1996)
241–273.

[13] K. Schmidt, T. Moor, S. Perk, Nonblocking hierarchical control of decentralized
discrete event systems, IEEE Transactions on Automatic Control 53 (10) (2008)
2252–2265.

[14] L. Feng, W. Wonham, On the computation of natural observers in discrete-
event systems, Discrete EventDynamic Systems: Theory andApplications, URL
http://dx.doi.org/10.1007/s10626-008-0054-3.

[15] B. Berger, P.W. Shor, Tight bounds for themaximumacyclic subgraph problem,
Journal of Algorithms 25 (1) (1997) 1–18.

[16] libFAUDES, Friedrich-Alexander University Discrete Event Systems library,
2009, URL http://www.rt.eei.uni-erlangen.de/FGdes/faudes/index.php.

http://www.control.utoronto.ca/DES
http://dx.doi.org/10.1007/s10626-008-0054-3
http://www.rt.eei.uni-erlangen.de/FGdes/faudes/index.php

	Abstraction-based failure diagnosis for discrete event systems
	Introduction
	Preliminaries
	Basic notation
	Language-diagnosability

	Model abstractions for language-diagnosability
	Problem statement
	Sufficient condition for abstraction-based diagnosability
	Equivalence of abstraction-based diagnosability

	Language-diagnosability for composed systems
	Model abstractions for composed systems
	Conditions for language-diagnosability
	Application example

	Conclusion
	References

