
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 4, APRIL 2011 723

Maximally Permissive Hierarchical Control
of Decentralized Discrete Event Systems

Klaus Schmidt, Member, IEEE, and Christian Breindl

Abstract—The subject of this paper is the synthesis of natural
projections that serve as nonblocking and maximally permissive ab-
stractions for the hierarchical and decentralized control of large-
scale discrete event systems. To this end, existing concepts for non-
blocking abstractions such as natural observers and marked string
accepting (msa)-observers are extended by local control consistency
(LCC) as a novel sufficient condition for maximal permissiveness.
Furthermore, it is shown that, similar to the natural observer con-
dition and the msa-observer condition, also LCC can be formulated
in terms of a quasi-congruence. Based on existing algorithms in the
literature, this allows to algorithmically compute natural projec-
tions that are either natural observers or msa-observers and that
additionally fulfill LCC. The obtained results are illustrated by the
synthesis of nonblocking and maximally permissive supervisors for
a manufacturing system.

Index Terms—Decentralized control, discrete event systems, hi-
erarchical control, large-scale systems, maximal permissiveness,
supervisory control.

I. INTRODUCTION

T HE use of hierarchical abstractions is a common fea-
ture of various supervisory control approaches that aim

at reducing the computational effort of the supervisor synthesis
for large-scale discrete event systems (DES) [1]–[13]. While
early work on this topic is mostly devoted to purely vertical
system structure [1], [2], [6], more recent approaches addition-
ally exploit the horizontal composition of large-scale DES so as
to avoid the enumeration of the global state space and the re-
lated state space explosion. In this respect, techniques such as
in [3]–[5], [12], [13] are stated for hierarchies with two levels,
whereas the methods in [7]–[11] are applicable in hierarchies
with multiple levels.

The major concern of the above approaches is the synthesis
of nonblocking supervisors, where different sufficient condi-
tions on the hierarchical abstractions are employed in order to
guarantee that the closed loop is nonblocking. However, the
optimality of the synthesis is not ensured in most of the cited
methods such that the resulting supervisor might be more re-
strictive than a maximally permissive monolithic supervisor. Al-

Manuscript received March 25, 2009; September 22, 2009; accepted June
30, 2010. Date of publication August 16, 2010; date of current version April 06,
2011. Recommended by Associate Editor E. Fabre.

K. Schmidt is with the Electronic and Communication Engineering Depart-
ment, Çankaya University, Ankara 06530, Turkey (e-mail: schmidt@cankaya.
edu.tr).

C. Breindl is with the Institute for Systems Theory and Automatic
Control, University of Stuttgart, Stuttgart D-70174, Germany (e-mail:
christian.breindl@ist.uni-stuttgart.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2010.2067250

though it can be argued in many cases that it is already satis-
factory to determine some supervisor that fulfills a given spec-
ification, there might be cases where the synthesis of a maxi-
mally permissive supervisor is essential. Such situation arises
for instance if the hierarchical supervisor synthesis results in
an empty closed loop. Then, it cannot be decided if the control
problem does not have a solution or if the supervisor synthesis
fails due to the loss of optimality.

In this paper, we propose a unified treatment of nonblocking
and maximally permissive hierarchical supervisory control for
DES based on the hierarchical and decentralized control archi-
tecture in [8]. In this architecture, different conditions on the
natural projections, that are employed for hierarchical abstrac-
tion, such as the natural observer condition in [10] or the marked
string accepting (msa)-observer condition in [14] are sufficient
for nonblocking control. As an extension to these results, we de-
velop local control consistency (LCC) as a novel sufficient con-
dition for maximal permissiveness. We show that LCC is less re-
strictive than output control consistency (OCC) that is employed
for maximally permissive control in earlier work [1], [2], [10].

Considering the sufficient conditions for nonblocking and
maximally permissive hierarchical control developed in this
paper, our further goal is to algorithmically find natural pro-
jections that fulfill these conditions. In this regard, we refer to
the natural observer extension algorithm in [15] that iteratively
extends a given alphabet until the related natural projection is
a natural observer for a given language. We first note that this
algorithm does not rely on the specific observer property to be
achieved but only utilizes the fact that the observer property
can be formulated as a quasi-congruence (i.e., a particular
equivalence relation) on the state space of a recognizer for the
given language. Hence, we propose a generalized extension
algorithm that can be applied to compute natural projections
with properties that can be formulated as quasi-congruences.
Moreover, we show that also the msa-observer property and
local control consistency can be stated in terms of quasi-con-
gruences. Consequently, we obtain a unified method for the
computation of natural observers or msa-observers which
are additionally locally control consistent. In both cases, we
achieve nonblocking and maximally permissive supervision in
our hierarchical and decentralized control architecture.

The computation of hierarchical abstractions based on
quasi-congruences for the recognizer of a given language is
also studied in [14]–[16]. In [16], the computation of optimal
abstractions requires the use of causal reporter maps instead
of natural projections. [14] and [15] enable the computation of
natural projections that are suitable for the framework estab-
lished in this paper, where [14] is based on a relabeling scheme.
Since we focus on the formulation of conditions on natural

0018-9286/$26.00 © 2010 IEEE

724 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 4, APRIL 2011

projections in terms of quasi-congruences, this paper employs
the algorithm in [15] that does not require relabeling.

Further hierarchical abstraction techniques and control archi-
tectures for the nonblocking and/or maximally permissive su-
pervisory control of DES are investigated in the literature. The
approaches in [1], [2], [6] employ causal reporter maps in a
two-level hierarchy that relies on a global system model. While
nonblocking control is not addressed in [1], it is ensured in [2]
for causal reporter maps with the observer property. The compu-
tation of such reporter maps is investigated in [16], while the al-
gorithm for achieving output control consistency in [1] enables
the computation of maximally permissive hierarchical abstrac-
tions in both approaches. The hierarchical abstraction in [6] re-
sults in a DES with flexible marking. Sufficient conditions such
as the weak observer property and deterministic reporter maps
are defined to ensure consistency between the high-level and
low-level control, and it is indicated that appropriate abstrac-
tions can be determined algorithmically.

Recently, several approaches that employ nondeterministic
automata in the hierarchical abstraction process were developed
[7], [11], [13]. The method in [7] is based on heuristics for
supervision equivalent hierarchical abstractions. It performs a
compositional synthesis to obtain a nonblocking and maximally
permissive supervisor in a centralized representation. Dropping
the requirement of maximal permissiveness, [11] elaborates an
incremental synthesis of nonblocking modular supervisors and
coordinating filters in the same framework. A new hierarchical
abstraction technique based on nondeterministic automata is in-
troduced in [13]. It supports the synthesis of nonblocking super-
visors, whereas maximal permissiveness is not guaranteed.

Natural projections are used in hierarchical and decentral-
ized architectures with two levels [4], [12] and multiple levels
[8]–[10]. The method in [4] is based on the definition of in-
terfaces that enable the information exchange between the hi-
erarchical levels. This technique makes the verification of the
level-wise conditions for nonblocking control scalable, while
optimality of the control may be lost. Necessary and sufficient
conditions for the coordination control of DES are studied in
[12]. In this work, the computation of hierarchical abstractions
is not considered, and specifications are required to be condi-
tionally decomposable. The approach in [10] is suitable for non-
blocking and maximally permissive control. The computation
of appropriate natural projections is achieved by a successive
application of the natural observer extension algorithm in [15]
and a variation of the algorithm in [1] to achieve OCC. How-
ever that work relies on the more conservative OCC condition
and does not provide a unified framework for the computation of
natural projections. DES with an input/output structure are con-
sidered in [9], while maximal permissiveness is not addressed.
In this approach, high-level specifications serve as system ab-
stractions, and supervisors are computed such that the closed
loop is free of deadlock and livelocks. Our previous work in
[8] establishes the msa-observer condition for natural projec-
tions as a sufficient condition for nonblocking hierarchical and
decentralized control. In the present paper, we extend this work
by maximal permissiveness and algorithmically compute appro-
priate hierarchical abstractions. To this end, results obtained in
[14], [17] are incorporated in the presentation of our work.

The remainder of the paper is organized as follows. In Sec-
tion II, we summarize basic notions related to the supervisory
control of DES and to set theory. A detailed discussion of ex-
isting results for the hierarchical and decentralized control of
DES is provided in Section III. These results are then extended
by our novel conditions for maximally permissive control in
Section IV and by our unified method for the computation of
projections for the nonblocking and maximally permissive hi-
erarchical and decentralized control in Section V. Section VI
illustrates the proposed approach by a manufacturing system ex-
ample, and Section VII gives conclusions.

II. PRELIMINARIES

At first, basic notions of the supervisory control theory for
DES are summarized [18], [19].

A. DES Notation

For a finite alphabet , the set of all finite strings over is
denoted . We write for the concatenation of two
strings , and when is a prefix of . The
empty string is denoted , i.e., for all .
A language over is a subset . The prefix closure of
is defined by . A language

is prefix closed if .
The natural projection , , 2, for the (not

necessarily disjoint) union is defined iteratively:
(1) let ; (2) for , , let
if , or otherwise. The set-valued inverse
of is denoted ,

. The synchronous product of two languages
is .

A nondeterministic automaton is a five-tuple
with the set of states , the alphabet , the

transition function , the initial state and the
set of marked states . We write if .
In order to extend to a partial function on , recur-
sively let and .
If contains at most one element for any and

, then is denoted as deterministic. In that case,
we consider as the transition function.
In the sequel, we model DES by deterministic automata un-
less otherwise stated. and

are the closed
and marked language generated by , respectively. A formal
definition of the synchronous composition of two
automata and can be taken from, e.g., [20].

In the supervisory control context, we write ,
where is the set of uncontrollable events and is the set of
controllable events. A control pattern is a set , ,
and the set of all control patterns is denoted . A su-
pervisor for an automaton is a map , where

represents the set of enabled events after the occurrence
of the string ; i.e., a supervisor can disable control-
lable events only. The automaton denotes an automaton

under supervision by . The closed-loop language
generated by is iteratively defined by (1)
and (2) iff , and

. To take into account the marked strings of , let

SCHMIDT AND BREINDL: MAXIMALLY PERMISSIVE HIERARCHICAL CONTROL 725

be the marking action of the supervisor . Then,
, and is denoted a marking super-

visor. The closed-loop system is nonblocking if
.

A language is controllable w.r.t. and the un-
controllable events if . The set
of all controllable sublanguages w.r.t. and is denoted
as . Since

is closed under arbitrary union [19], for every speci-
fication language , there uniquely exists a supremal control-
lable sublanguage of w.r.t. and . It is formally de-
fined as . A su-
pervisor that leads to is said to
be maximally permissive. It holds that a marking supervisor
such that exists whenever

[19].

B. Set Theory

We present basic results from set theory as employed in
[14]–[16]. We denote the set of all equivalence rela-
tions on the set . For , is the equivalence
class containing . The set of equivalence classes of

is written as and the canonical
projection maps an element to its
equivalence class . Let be a function. The
equivalence relation is the kernel of and is defined as
follows: for ,

(1)

Given two equivalence relations and on , , i.e.,
refines , if for all ,

. In addition, we define the meet operation for
as follows. For any two elements , , it holds for all

, that

(2)
Let and be sets and be a set-valued function.
It is also assumed that , and the canonical projection

is naturally extended to sets. The equivalence relation
on is defined for , by

(3)

Now let be functions, where ranges over an
index set . Then is called a dynamic
system[16]. The equivalence relation is called a
quasi-congruence for if

(4)

Finally, we introduce the (nondeterministic) quotient au-
tomaton (QA) of an
automaton for an equivalence relation

and an alphabet as in [16]. It holds that
is the quotient set with the associated canonical

projection . The initial state and the marked states
in the QA are and , respectively.

Fig. 1. Hierarchical and decentralized control architecture.

Also is an additional label. The nondeterministic
induced transition function of

is defined as

if

if .

III. NONBLOCKING AND MAXIMALLY PERMISSIVE

HIERARCHICAL CONTROL

In this section, several previous results on the nonblocking
and maximally permissive control are revisited in the scope of a
hierarchical and decentralized control framework. In particular,
a discussion of the existing results in Section III-F motivates the
unified approach developed in this paper.

A. Hierarchical and Decentralized Control Architecture

Our work is based on the hierarchical and decentralized con-
trol architecture introduced in [21]. Variations of this architec-
ture can also be found in [8], [10], [17], [22]. The representation
chosen in this paper is that of [8], [17].

It is assumed that the DES plant is described by a set of plant
components modeled by automata over the respec-
tive alphabets . Each alphabet , con-
sists of the controllable events and uncontrollable events

such that . Each plant component ,
can share events with other components. This set

of shared events is defined as , and
it is assumed that all plant components agree on the controlla-
bility status of their shared events, i.e., for all , ,
it holds that . Then, the overall plant is
given by with the alphabet , the
set of controllable events , the set of uncontrol-
lable events , and the set of shared events

.
Our supervisor synthesis is based on the practical assumption

that the specification is given by local specifications
for the plant components and a global specification

such that

(5)

Then, the supervisor synthesis is performed as follows. First,
local supervisors are computed such that

. For convenience,
we write for . The overall locally con-
trolled plant is characterized by as in Fig. 1.

Since the global specification is given over a
subset of the overall alphabet , an abstracted plant model

726 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 4, APRIL 2011

is employed in the next synthesis step. For each ,
the abstraction alphabet is defined such that it contains all
events that are either shared with other components or the spec-
ification, i.e., . Defining the
high-level alphabet and the natural projections

for and , the
high-level plant is computed such that

(6)

This procedure can be seen on the right-hand side of Fig. 1.
In the presented approach, the high-level controllable and
uncontrollable events are chosen as
and , respectively. The high-level su-
pervisor is thus defined with

. The resulting
low-level supervisor is determined from by
defining for each
as can be seen on the left-hand side of Fig. 1. The local set of
enabled events for each component , is hence

. Then, the overall closed-loop is described by

(7)

and we denote our control architecture as nonblocking if

(8)

A further crucial point in hierarchical supervisory control is
maximal permissiveness. It ensures that in spite of the informa-
tion aggregation in the abstraction process, the optimality of
the control is not lost, i.e., the hierarchical supervisor yields
the same closed-loop behavior as a monolithic supervisor. It
has to be noted that finding a nonblocking supervisor that ful-
fills the given specification might already be sufficient in many
practical large-scale applications as long as the closed-loop be-
havior is not empty. However, in case maximal permissiveness
is not guaranteed, it is possible that the closed-loop behavior
is empty, while maximally permissive control would result in a
non-empty closed loop.

We denote our control architecture as maximally permissive
if the closed-loop behavior under the joint control action of the
supervisors , defined in (7) is equal to the closed-
loop behavior under monolithic supervisory control

(9)

B. Nonblocking Hierarchical and Decentralized Control

In this section, two alternative conditions on natural projec-
tions are employed to achieve nonblocking control in the archi-
tecture in Section III-A.

1) Natural Observer: First, the natural observer is defined.
Definition 3.1 (Natural Observer [2]): Let be a

language, and let be the natural projection for
. is an -observer iff for all and

In words, is an -observer if any string can be
extended to a string in whenever its projection can be
extended to a string in . It is stated in [10] [Proposition 7]
that the -observer condition for , , yields
nonblocking control in the described control architecture.

Theorem 3.1 (Natural Observer [10]): The control architec-
ture in Section III-A is nonblocking if is an -ob-
server for .

2) MSA-Observer: Second, the marked string accepting
(msa)-observer condition is taken into account.

Definition 3.2 (MSA-Observer [14]): Let be a lan-
guage and let be the natural projection for

. is an msa-observer (w.r.t.) iff is an -ob-
server and for all strings such that and

(10)

This means that on the one hand, the natural observer condi-
tion has to be fulfilled for the closed language . On the other
hand, (10) concerns strings that can be extended by an
event and such that the projection is an element
of . For such strings, it must hold that there is a prefix

with the same projection, i.e., and such
that in order to ensure that whenever a string in the pro-
jected language is passed, each corresponding string in
passes a string in .

In addition, we define the notion of liveness of a language
w.r.t. a given alphabet as follows.

Definition 3.3 (Liveness): Let be a prefix-closed
language and . is live w.r.t. if

(11)

That is, is live w.r.t. the alphabet if all of its strings can
be extended to an event in .1

Combining the msa-observer condition and liveness, the fol-
lowing theorem constitutes a variation of the main result in [8]
with high practical relevance (see also [23] [Theorem 4.1]):
Liveness of w.r.t. all component alphabets en-
sures that no plant component can completely refrain from in-
teracting with the other plant components.

Theorem 3.2 (MSA-Observer): The control architecture in
Section III-A is nonblocking if is an msa-observer w.r.t.

and is live w.r.t. for .
Remark 3.1: Note that, as stated in [8], the conditions in Def-

inition 3.1 and 3.2 are incomparable. This fact can be seen in
Fig. 2 considering the automata and over the alphabet

. Here, the projection with
is an -observer but not an msa-observer

w.r.t. , whereas is an msa-observer w.r.t.
but no -observer. Furthermore, it has to be clarified that
liveness in Theorem 3.2 does not constitute a severe restriction.
It simply states that each system component should always be
able to at least generate some of its shared events in the closed
loop, which is a natural requirement in practice (otherwise the
component stops its participation in the system operation). For

1Note that this definition of liveness is stronger than the usual definition where
� � �.

SCHMIDT AND BREINDL: MAXIMALLY PERMISSIVE HIERARCHICAL CONTROL 727

Fig. 2. Comparison of natural and msa-observers.

example, we consider the system that is composed of the com-
ponents and in Fig. 2 with the abstractions
and and the shared event . Assuming the high-level
closed loop , nonblocking behavior
is achieved for the system with , whereas the system with

is blocking since liveness of w.r.t. is vio-
lated. However, also the nonblocking case with is undesir-
able in practice since that component terminates its operation
after the occurrence of . In contrast, the desirable case would
be the closed loop that is live w.r.t. and hence en-
sures nonblocking behavior for both and . Together, it de-
pends on each particular supervisory control problem which of
the above conditions is preferable. Section VI-A shows a prac-
tical example where the msa-observer condition is beneficial.

C. Verification of Observer Conditions

Regarding the sufficient conditions for nonblocking hier-
archical and decentralized control in Theorem 3.1 and 3.2, a
problem of great interest is to algorithmically verify if given
natural projections fulfill the respective conditions. To this end,
approaches that are based on the computation of quasi-congru-
ences for particular dynamic systems have been developed for
natural observers ([16]) and msa-observers ([14]).

1) Natural Observer: Let be a non-
blocking automaton2, and let with the natural pro-
jection . Then, the dynamic system

is defined with

According to [16], the coarsest quasi-congruence
for exists and can be computed with the algorithm

in [24] with a complexity of , where and
denote the number of states and transitions of , respectively.
With , and , the observer condition in Definition 3.1
can be verified by means of the QA .

Theorem 3.3 (Observer Verification [16]): The projection
is an -observer iff is deterministic and contains
no -transitions.

Example 3.1: To illustrate Theorem 3.3, we first investigate
in Fig. 3 with the alphabet . The corresponding

dynamic system fulfills
,

and for all states . is depicted
in Fig. 3 by transitions with the label . The coarsest quasi-

2In the sequel, we consider� as the canonical recognizer of � ���.

Fig. 3. Verification of the � ���- and � �� �-observer condition.

congruence on is indicated by the shaded areas in
Fig. 3, i.e.

Since the QA has a -transition, the projection
with is not an -observer.

Choosing , the evaluation of as shown
in the lower part of Fig. 3.3 for suggests that the associated
projection is an -observer, since the
QA is deterministic and has no -transitions.

2) MSA-Observer: In a similar way, the msa-observer prop-
erty can be formulated in terms of a quasi-congruence. Here,
the dynamic system
for a nonblocking automaton with the
projection alphabet is defined to address the condition in
Definition 3.2. is defined as above. In order to introduce

as in [14], we first write
for the set of states reachable

immediately after an event in the abstraction alphabet including
the initial state. Then, it holds that

if ,
,

,

otherwise.

Hence, maps a state to all states in
if for a string with one of

the following alternatives hold: (1) violates the condition in
(10), or (2) there is no string such that
and , with . The following
theorem cites a result from [14] [Theorem 4.2]. Computing the
coarsest quasi-congruence for with the algorithm
in [24], the resulting QA can be used to verify the
msa-observer condition in polynomial time .

Theorem 3.4 (MSA-Observer Verification [14]): The projec-
tion is an msa-observer w.r.t. iff is deter-
ministic and contains no -transitions.

Example 3.2: Theorem 3.4 is further explained in Fig. 4. With
the automaton and the alphabet , the dynamic
system is with for all

and for , while
for . The coarsest quasi-congruence is again

728 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 4, APRIL 2011

Fig. 4. Verification of the msa-observer condition.

depicted by the shaded areas in . The computation of the QA
shows that with is not an msa-observer.

Conversely, the analogous discussion for the automaton
and the alphabet with the QA in Fig. 4
suggests that is an msa-observer.

D. Computation of Natural Observers

In practice, it is not only interesting to verify if the condi-
tions in the previous section are fulfilled but it is also relevant to
address the case where the verification fails. Then, it is desired
to find a minimal extension of a given projection alphabet such
that the sufficient conditions for nonblocking hierarchical and
decentralized control hold. This event set extension problem is
studied in [15] for the natural observer condition. It is first noted
that finding a minimal extension is NP-hard. Then, the following
polynomial-time algorithm that computes acceptable extensions
is proposed.

The algorithm is based on the computation of the QA
that is performed in step 1. Then, either the verifica-

tion of the natural observer condition according to Theorem
3.1 is successful and the current alphabet is returned, or
an extension of is required. In the latter case, the event
set extension algorithm in [15] is applied. It adds events to

in order to remove -transitions and resolve the possible
nondeterminism in . The observer algorithm iterates
until an appropriate alphabet extension is found. Its complexity,
which is , is dominated by that of the event set
extension.

Note that there is currently no analogous result that addresses
the event set extension for the msa-observer condition.

E. Conditions for Maximally Permissive Control

In the literature, there is one result in [10] that employs output
control consistency (OCC) as introduced in [1] as a sufficient
condition for maximal permissiveness in the control architecture
in Section III-A.

Definition 3.4 (OCC): Let be an automaton, let
be a set of uncontrollable events, and let . The natural
projection is output control consistent (occ) w.r.t.

and if for every of the form

where , and for , we
have the property that .

This means that, whenever is an uncontrollable event in
, its immediately preceding events in must all

be uncontrollable, such that its nearest controllable event is an
element of .

With the additional assumption that all plant components do
not share any events, [10] states the following result.

Theorem 3.5: The control architecture in Section III-A is
nonblocking and maximally permissive if and is
an -observer and occ w.r.t. and , for

.
[10] also suggests an algorithm with complexity in

order to modify a given natural projection to be occ.

F. Discussion of Existing Results

In summary, the state of the research concerning the hierar-
chical and decentralized architecture described in Section III-A
offers sufficient conditions for the nonblocking supervisory
control that can be verified in polynomial time. However, the
algorithmic computation of natural projections for nonblocking
control is only applicable to the natural observer condition,
and maximally permissive control can only be verified for
the restrictive case where the plant components do not share
events. Moreover, the computation of natural projections for
nonblocking and maximally permissive hierarchical and de-
centralized control currently relies on the iterative application
of the observer extension algorithm in Section III-D and the
algorithm for OCC as indicated in Section III-E.

In the subsequent section, we identify local control consis-
tency (LCC) of natural projections as a sufficient condition for
maximally permissive control that is suitable for our control ar-
chitecture and less restrictive than OCC. Furthermore, we show
that the assumption of mutual controllability allows the maxi-
mally permissive control for the case where plant components
share events. Then, we investigate the algorithmic computation
of appropriate natural projections for nonblocking and maxi-
mally permissive hierarchical and decentralized control in Sec-
tion V. We first deduce a generalized observer extension algo-
rithm from Algorithm 1 in order to compute natural projections
that are msa-observers. Moreover, we derive an appropriate for-
mulation of LCC that allows to use the generalized observer ex-
tension algorithm for the computation of natural projections that
are locally control consistent.

Algorithm 1 (Observer Extension): Input: ,

1. Compute the quasi-congruence and the QA .

2. if is deterministic and contains no -transitions

return

else

event set extension of as in [15] and go to 1.

IV. MAXIMALLY PERMISSIVE CONTROL

The goal of this section is the development of conditions that
are sufficient for nonblocking and maximally permissive control
in conjunction with the existing results on nonblocking control
in Theorem 3.1 and 3.2. As opposed to the previous work in [10],
it is desired that the requirement of mutually disjoint alphabets

SCHMIDT AND BREINDL: MAXIMALLY PERMISSIVE HIERARCHICAL CONTROL 729

of the plant components , in Theorem 3.5 is
relaxed.

In principle, it has to be considered that the fulfillment of (9)
both depends on the plant abstractions based on the projections

, and on the specification as
in (5). In this paper, we intend to determine ,
such that (9) holds for all possible specifications. In order to
achieve a unified treatment, instead of deriving extensions
to the conditions in Theorem 3.1 and 3.2 separately, our
investigation is based on two common properties: The control
architecture is nonblocking and all projections ,
are -observers. Now we address the following problem.

Problem 1: Assume that the control architecture in Sec-
tion III-A is nonblocking and that is an -observer
for . We want to find sufficient conditions for
the natural projections , such that the control
architecture is also maximally permissive.

A. Conditions for Maximally Permissive Control

We first state a condition that supports the stepwise solution of
Problem 1. It holds that the control architecture in Section III-A
is maximally permissive if the projection of the closed-loop lan-
guage in the case of monolithic supervisory control is control-
lable w.r.t. the closed language of the high-level plant.

Proposition 4.1: Assume that the control architecture in Sec-
tion III-A is nonblocking, and define . Also
let and write . If

is controllable w.r.t. and , then the con-
trol architecture is maximally permissive.

Proof: According to (9), it has to be shown that
. As is controllable w.r.t. , the

fact that is nonblocking establishes that is control-
lable w.r.t. . Together with , this
implies that . To show the reverse inclusion,
we observe that
as is controllable w.r.t. and . Since

and , also

.
As a consequence, it must hold for the realization of the

supremal controllable sublanguage that the supervisor
only needs to disable controllable high-level events in .

In the next definition, we introduce local control consistency
(LCC) as a novel condition for the projection that implies
this requirement as shown in the subsequent Lemma 4.1.

Definition 4.1 (LCC [17]): Let be an automaton over the
alphabet , let be a set of uncontrollable events, and
let . The natural projection is locally
control consistent (lcc) w.r.t. a string and if for
all s.t. , it holds that either

s.t. or there is a
s.t. . Furthermore, we call lcc w.r.t. a language

and if is lcc for all .
In words, a natural projection is locally control consistent

w.r.t. a string , if for each uncontrollable event
that is feasible after the corresponding projected

Fig. 5. Illustration of local control consistency.

string, there is either no continuation or an uncontrollable con-
tinuation of that terminates with . Hence, if is possible
after , then it cannot be prevented.

Example 4.1: We illustrate LCC by the automaton over
the alphabet in Fig. 5. Using the
abstraction alphabet, and the projection

, the high-level plant is obtained. Note that
transitions with controllable events are marked by a tick, i.e.,

. Then it holds for all strings in that
can be extended by the uncontrollable high-level event that
the corresponding low-level strings (leading to the states 2, 3,
4, 5 and 6) have at least one uncontrollable extension in

after which is feasible. Hence, is lcc w.r.t.
and .

Lemma 4.1: Assume that the control architecture in Sec-
tion III-A is nonblocking and that is an -observer. Also
let and write .
Then it holds that is controllable w.r.t. and

if is lcc w.r.t. and .
Proof: We assume that is lcc w.r.t. and . It

has to be shown that is controllable w.r.t.

and . Assume the contrary, i.e., we have and

s.t. but . Since

, it follows that
. Considering that , and is an

-observer, for all ,
there must be a s.t. . Hence,
Definition 4.1 implies that there is also a s.t.

which contradicts the assumption that

.
The conditions for maximal permissiveness in our previous

considerations rely on the fact that the locally controlled plant
is given explicitly. Since our architecture is designed to

avoid the explicit evaluation of , we now investigate how the
presented results can be applied for the maximally permissive
control in the decentralized case. The following theorem states
that LCC is sufficient for maximal permissiveness if only the
realization of the global specification is taken into account.

Theorem 4.1: Assume that the control architecture in Sec-
tion III-A is nonblocking and that is an -observer for

. If is lcc w.r.t. and for all
, then .

Proof: We verify the conditions in Lemma 4.1. With [10]
[Proposition 5], is an -observer. Hence,
we show that is lcc w.r.t. and .

Let , and s.t.
and . Define for .
Since , for all .
Furthermore, for all s.t. , .

730 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 4, APRIL 2011

Fig. 6. Illustration of mutual controllability.

As is an -observer and lcc w.r.t. and , for
all such that , there exists a
s.t. . For all remaining , let . Defining

and noting that , we have
. Hence, , and
. Since , and were arbitrary, it follows that

is lcc w.r.t. and .
In order to achieve maximal permissiveness for the overall

control architecture, the realization of the local specifications
, also has to be considered. To this end, we in-

vestigate and in Fig. 6. Let , define
, and assume that all events are uncontrollable.

Then, the local specification with
is not controllable w.r.t. , while is control-
lable w.r.t. . Here, maximal permissiveness is violated
since the local supervisor synthesis with and neglects
the fact that cannot occur after because of the
synchronization with . This situation can be avoided if the
plant components are mutually controllable [25], which ensures
that after any string of a composed system, the occurrence of an
uncontrollable shared event is either feasible in all components
that share it or it is infeasible in any component.

Definition 4.2 (Mutual Controllability): Let , be au-
tomata and define the projections and

. and are mutually controllable
if

Extending the conditions in Theorem 4.1 with mutual con-
trollability is sufficient for maximally permissive control in our
control architecture including local specifications.

Theorem 4.2 (Maximal Permissiveness): Problem 1 is solved,
i.e., the control architecture in Section III-A is maximally per-
missive, if is lcc w.r.t. and for all ,
and all local components , , , , , are
mutually controllable.

The proof of Theorem 4.2 relies on the following lemmas.
Lemma 4.2: Assume that automata with the al-

phabets and languages ,
are given. Furthermore, define and let

and , , , , be mutually
controllable. Then,

.
Lemma 4.3: Let be an automaton over , the

uncontrollable event set, and , specifications. Then

Lemma 4.2 is shown in Appendix A, while Lemma 4.3 is
stated in [19] [Exercise 3.7.13]. Now, Theorem 4.2 is proved.

Proof: Let .
We first show that . On the
one hand,

. That is, is controllable w.r.t. and
. According to Lemma 4.2, also .

With this
follows.

To show the other inclusion let . It
holds that , and every sub-
language of that is controllable w.r.t. and
is also controllable w.r.t. and , since is con-
trollable w.r.t. and . Hence,

such
that . Hence, Lemma 4.3
implies the formula shown at the bottom of the page. Now ap-
plying Lemma 4.3 and then Theorem 4.1, we obtain

Finally, we combine the conditions in Section III-B and in
this section to achieve nonblocking and maximally permissive
hierarchical and decentralized supervisory control.

Corollary 4.1: The control architecture in Section III-A is
nonblocking and maximally permissive if

1) is lcc w.r.t. and for ;
2) , are mutually controllable for ,

;
3) (a) is an -observer for or (b)

is an msa-observer w.r.t. and is
live w.r.t. for .

SCHMIDT AND BREINDL: MAXIMALLY PERMISSIVE HIERARCHICAL CONTROL 731

Fig. 7. Multi-level hierarchical and decentralized control architecture.

Proof: The proof of Corollary 4.1 follows from Theorem
4.2 considering that both 3.(a) and 3.(b) imply that is non-
blocking and is an -observer for .

The results in this section are elaborated for a control archi-
tecture with two hierarchical levels. It is shown in [17] that the
same conditions can be employed in a multi-level hierarchy as
depicted in Fig. 7. Here, each high-level closed-loop ,

(indicates the hierarchical level) can be used as a
low-level plant for a further hierarchical synthesis.

B. Related Work

In order to relate our novel result for maximal permissiveness
to the existing condition in [10], we show that OCC as described
in Section III-E is more restrictive than LCC.

Lemma 4.4: Let be an automaton over , let be
a set of uncontrollable events, and let . Then, it holds
for that

Proof: Let be occ w.r.t. and , and assume
that for some with and
s.t. for some . Then, either

s.t. or there is a
s.t. . In the first case, LCC holds by definition.
Otherwise, since is occ, it must hold that .
Noting that , , and were chosen arbitrarily, is lcc
w.r.t. and .

With this result, it is readily observed that the conditions in
[10] are more restrictive than our comparable conditions (1., 2.,
3.(a)) in Corollary 4.1. The work in [10] requires OCC instead
of 1., and assumes that the plant components do not share any
events (i.e., mutual controllability is trivially fulfilled) instead
of 2. Furthermore, the conditions 1., 2. and 3.(b) in Corollary
4.1 constitute a novel result for the nonblocking and maximally
permissive hierarchical control.

V. UNIFIED APPROACH FOR THE COMPUTATION

OF NATURAL PROJECTIONS

In this section, we investigate the algorithmic computation of
projections that are suitable for the nonblocking and maximally
permissive hierarchical and decentralized control. To this end,
we present a generalized extension algorithm that allows the
unified computation of projections that are natural observers and
lcc, and msa-observers and lcc.

A. Generalized Extension Algorithm

The application of Algorithm 1 does not depend on the
-observer property to be achieved: both the verification

of the -observer condition (step 1. and the if clause in 2.)
and the event set extension in step 2. only use the fact that the

-observer property can be formulated as a quasi-con-
gruence on the state set of with the corresponding QA

as stated in Theorem 3.1. Hence, Algorithm 1 can be
employed for imposing any condition on the natural projection

of a language that can be formulated based
on a quasi-congruence and such that the QA is
deterministic and does not have -transitions. We denote this
modification of Algorithm 1 with a general quasi-congruence

instead of and the corresponding QA instead
of as the generalized extension algorithm.

B. Computation of MSA-Observers

As a first application of the generalized extension algorithm,
we observe that the msa-observer condition in Definition 3.2
is a condition for the projection of the language

that can be formulated as a quasi-congruence
with the corresponding QA as stated in Theorem

3.4. Hence, the generalized extension algorithm enables the al-
gorithmic computation of msa-observers, where and

. Taking into account that can be com-
puted based on the dynamic system in Section III-C, the
generalized extension algorithm is performed with a complexity
of .

C. Maximally Permissive Control

The goal of this section is the computation of projections
that are lcc w.r.t the closed language

of an automaton and a set of uncontrollable events . Re-
ferring to the considerations in Section V-A, we formulate LCC
in terms of a quasi-congruence. We define the dynamic system

, with
s.t.

if

or

otherwise.
(12)

That is, maps a state to all states in
if and only if the strings leading to the state

fulfill LCC. Computing the coarsest quasi-congruence on
and the QA , lcc can be verified in conjunction

with the -observer condition with the following theorem.
Theorem 5.1 (LCC Verification): The projection is an

-observer and lcc w.r.t. and iff is
deterministic and contains no -transitions.

Example 5.1: Theorem 5.1 is illustrated in Fig. 8. With the
automaton and the alphabets , ,
the dynamic system is with

for all and for
, while . The

coarsest quasi-congruence is depicted by the shaded areas
in . The computation of the QA shows that with

is not lcc. A projection that fulfills lcc is achieved
when adding to the abstraction alphabet, i.e., .
Then, the corresponding QA is in Fig. 8.

732 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 4, APRIL 2011

Fig. 8. Verification of local control consistency.

In order to prove Theorem 5.1, we introduce the Nerode
equivalence for a language [19]. Let , .
Then

(13)

Based on this definition, we now relate and the Nerode
equivalence for the projected language

in the following proposition. It shows that the
projection of two strings in leads to the same Nerode
equivalence class in if and only if the two strings
lead to states in the same equivalence class of .

Proposition 5.1: Let be an arbitrary
automaton and be defined as above, let
be an -observer and lcc w.r.t. and . Also let ,

and , s.t. and .
Then

(14)

Proposition 5.1 is proved in Appendix B. Based on this re-
sult, Theorem 5.1 follows. To this end, we extend to strings:

and for
and .

Proof: “ ”: It holds that is an -observer and lcc
w.r.t. and . We show that is deterministic and
has no -transitions.

We first prove that is deterministic. Assume the con-
trary and denote the state set and transition function of
as and , respectively. Then, there are , , ,
s.t. and . Then, there exist , , ,

with , ,
and , according to the QA con-
struction. Let , s.t. and

, i.e., according to Proposition
5.1. Then, (since) implies that

(Proposition 5.1), i.e., w.l.o.g., there is
s.t. but .

But then, , while
contradicts that .

We now show that does not have -transitions. As-
sume the contrary. Then, there are , with
s.t. and , , s.t.

, , and according to the QA
construction. Let for some . Again,
since , also . Then,
w.l.o.g., there is s.t. but

. Since , this leads to contradiction.
“ ”: It holds that is deterministic and has no
-transitions. We show that is an -observer and lcc

w.r.t. and .

We first prove that is an -observer. Let
and for . Let and

. Then, there are two cases. If ,
s.t. . Since is a quasi-congruence for

, also . Hence, there is s.t.
and . If does not exist, there must be

s.t. and with
and . But this is only possible if

is nondeterministic or contains -transitions, which leads to
contradiction.

We finally show that is lcc w.r.t. and . Let
and for . We write

and . Again, there are two cases.
If , there is s.t. exists.
Then, and imply that

. Since is a quasi-congruence for , also
. But this implies that

s.t. , i.e., is lcc for . If does not
exist, there must be s.t. and ,

with s.t. .
This is only possible if is nondeterministic or contains

-transitions.
Hence, the generalized extension algorithm can be used for

the computation of projections that are lcc if and
are chosen in Algorithm 2. Again, the com-

putation of based on the dynamic system allows for
a computational complexity of . Furthermore, the
computation of nonblocking projections and maximally permis-
sive projections can be performed together. To this end, we de-
fine the dynamic systems

and
. Then, Algorithm 2 with

and the QA is suitable
for the unified computation of projections that are natural ob-
servers and lcc, while Algorithm 2 with and the
QA enables the unified computation
of projections that are msa-observers and lcc with complexity

.

Algorithm 2 (Generalized Extension): Input: ,

1. Compute the quasi-congruence and the QA .

2. if is deterministic and contains no -transitions

return

else

event set extension of as in [15] and go to 1.

VI. APPLICATION EXAMPLE

In this section, we apply the concepts presented in the pre-
vious sections to several components of the Fischertechnik sim-
ulation model of the Chair of Automatic Control, University of
Erlangen-Nuremberg in Fig. 9 (see also [8], [23]). We first illus-
trate the computation of different abstractions for a stack feeder
in Section VI-A. Then, we employ the approach in Section V-C
to synthesize maximally permissive hierarchical control for a

SCHMIDT AND BREINDL: MAXIMALLY PERMISSIVE HIERARCHICAL CONTROL 733

Fig. 9. Fischertechnik manufacturing system model.

Fig. 10. Stack Feeder (SF): (a) front view; (b) side view.

Fig. 11. SF level 0: (a) supervisor; SF abstraction level 1 (b) natural observer;
(c) msa-observer (with and without LCC); (d) natural observer with LCC.

rail transport system in Section VI-B, and compare the different
abstractions by means of a supervisor synthesis for the overall
manufacturing system in Section VI-C. All computations are
carried out with the observer-plugin of the software
library for DES [26].

A. Stack Feeder

As is shown in Fig. 10, the stack feeder (SF) comprises a
tower that can hold wooden parts and a conveyor belt with a
small block attached to it that can push parts towards the neigh-
boring conveyor belt C1. A light barrier detects if parts arrive
or leave the SF which is modeled by the events and ,
respectively. In addition, the conveyor belt of the SF can start
and stop moving (events and), and a magnetic sensor
detects if the small block attached to the belt reaches () or
leaves () its rest position. The motion of the belt is initi-
ated by the event - that is shared with C1. The closed-loop
behavior of the SF according to a supervisor design performed
in [8] is given by the automaton in Fig. 11(a). It is desired
that a present part is transported to C1 before the belt stops at
its rest position.

We now investigate possible abstractions for a hierar-
chical supervisor design. The initial abstraction alphabet is

- with the only shared event - . The

projection alphabets for the computation of -ob-
servers (Section III-D) and msa-observers (Section V-B) are

- and - , respectively.
The corresponding abstracted plant models are shown

Fig. 12. Rail transport system (R) with connected conveyor belts (C).

Fig. 13. Level 0 supervisors: (a) R2; (b) C16.

in Fig. 11(b) and (c), which suggests that the msa-observer
condition is beneficial for this example. In addition, we com-
pute locally control consistent projections that are suitable for
maximally permissive control as proposed in Section V-C.
Here, the -observer computation with LCC yields

- (Fig. 11(d)) and the msa-observer

computation with LCC leads to - (Fig. 11(c))
since there is no uncontrollable high-level event. It is interesting
to note that the projection to - is suitable for
maximally permissive control but does not fulfill OCC.

B. Rail Transport System

The rail transport system (R) is depicted in Fig. 12. It consists
of two carts R1 and R2 that travel between different positions
on a shared rail. A conveyor belt is mounted on each cart (C15
on R1 and C16 on R2) such that parts can be loaded. In our
study, we assume that R1 can serve the conveyor belts C7 and
C9, while R2 moves between C10 and C9. Switch-keys in front
of each conveyor belt indicate the presence of R1 or R2.

1) R2: The closed-loop of R2 after a local supervisor syn-
thesis is depicted in Fig. 13(a). R2 initially waits in front of C10.
If a trip to C9 is requested , R2 moves to the left

, leaves the switch-key at C10 , arrives
and stops at C9. The travel back to C10 is initiated by

- . Then, R2 moves to the right , leaves C9 ,
arrives and stops at C10.

2) C16: in Fig. 13(b) represents the closed-loop of
C16. The shared events - and - model the transport
of a part from C10 to C16 and from C16 to C9, respectively.
When a part arrives/leaves, occurs. Furthermore,
the motion of C16 is described by (down), (up) and

(stop).
3) R2 and C16: We now consider the joint action of R2

and C16, where it is desired that parts are transported from
C10 to C9, while R2 and C16 are not allowed to move at
the same time. This behavior is specified by
in Fig. 14(a). Following the hierarchical approach in Sec-
tion III-A, we compute abstractions with the initial alphabet

- - for and
with - - for , where

734 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 4, APRIL 2011

Fig. 14. Level 1 specification: (a) R2 and C16; Level 1 abstractions: (b) R2
(natural and msa-observer); (c) R2 (natural and msa-observer with LCC);
(d) C16 (all abstractions); Level 2 abstractions: (e) R2 and C16 (natural and
msa-observer); (f) R2 and C16 (natural and msa-observer with LCC).

Fig. 15. Level 2 abstractions: (a) R1 and C15 (natural and msa-observer);
(b) R1 and C15 (natural and msa-observer with LCC).

and are included in for a later supervisor synthesis.
The resulting abstracted plant model of R2 for the case of
nonblocking control (both natural and msa-observer) and max-
imally permissive control (additional fulfillment of LCC) are
depicted in Fig. 14(b) and (c), respectively. The computation of
abstractions for C16 always yields the abstracted plant model

in Fig. 14(d).
After the synthesis of a nonblocking supervisor for

and , we obtain a fur-

ther abstraction with the initial alphabet
- - that contains all events that

are shared with the connected components and further spec-
ifications used in the subsequent sections. The resulting
abstractions for nonblocking control and maximally permissive
control are shown in Fig. 15(e) and (f), respectively. In addi-
tion, it can be verified that all high-level closed-loops are live
w.r.t. to their component alphabets, i.e., in each of the states
of , there exists a string that ends with an event in the
alphabet of and , respectively.

4) R1 and C15: An analogous synthesis as for R2 and C16
is performed for R1 and C15. Initially, R1 waits in front of C7.
The main difference is that R1 has to pass C8 before C9 can
be reached. The abstracted plant model is shown in
Fig. 15 (a) (nonblocking control) and (b) (maximally permissive
control).

5) Overall Rail Transport System: The overall rail trans-
port system is composed of the abstracted plant models

Fig. 16. Level 3 specification: (a) � ; Level 3 abstraction: (b) R1 and
R2 (natural and msa-observer); (b) R1 and R2 (natural and msa-observer with
LCC).

and , and it is desired that R1 and R2 do not travel to-
wards C9 simultaneously as specified by in Fig. 16(a).

We design a nonblocking supervisor for

and for the case of purely nonblocking control
with 5 states and additional maximal permissive control with
26 states (it can be verified that mutual controllability is ful-
filled for all plant components). Furthermore, we abstract the
computed closed-loop behaviors in order to obtain a model of
R that can be used in a supervisor synthesis for the overall man-
ufacturing system. In the first case, we compute a nonblocking
abstraction (natural observer and msa-observer) with the initial
alphabet - - - - and the ab-
stracted plant model with 3 states in Fig. 16(b). In the second
case, the abstracted plant model with the projection alphabet

has 17 states. The projection of
this model to the alphabet is shown in Fig. 16(c). Com-
paring to Fig. 16(b), it is readily verified that a larger closed-
loop behavior is achieved by enforcing maximally permissive
control by means of projections that fulfill LCC. However, it
has to be taken into account that the abstracted plant models
for maximally permissive control are potentially larger than the
models that are obtained if maximally permissive control is not
enforced.

This effect can also be seen in Fig. 17 that illustrates the hi-
erarchical architecture for the rail transport system. Here, the
shaded boxes indicate the automata that have to be used to im-
plement the supervisor according to (7), and the numbers next to
the automata names state the respective number of states for the
nonblocking (left) and the maximally permissive (right) case.
Together, the supervisors needed to achieve nonblocking con-
trol have a sum of 75 states, while the supervisors required for
maximally permissive control have a state count of 106. In com-
parison, a monolithic synthesis evaluates a plant with 165 620
states and a specification with 168 states to compute a super-
visor with 404 states.

C. Comparison of Different Abstractions

We follow the hierarchical design in [8], [23] to synthesize
supervisors for the manufacturing system in Fig. 9 with its 25
subsystems. For abstraction, we compute natural observers and
msa-observers and their maximally permissive counterparts.
Table I shows the accumulated state counts of the resulting 39
supervisors.3 It can be observed that the use of msa-observers is
beneficial for this application. In addition, the results in Table I

3A monolithic supervisor would be in the order of �� states [8].

SCHMIDT AND BREINDL: MAXIMALLY PERMISSIVE HIERARCHICAL CONTROL 735

Fig. 17. Hierarchical architecture of the rail transport system.

TABLE I
SUPERVISOR STATE COUNTS FOR DIFFERENT ABSTRACTIONS

confirm that maximally permissive abstractions potentially lead
to larger supervisors.

Note that although natural observers and msa-observers are
not sufficient for maximally permissive control, supervisors ob-
tained by these abstractions can still be maximally permissive.
Considering large-scale systems, this property can be verified
by dividing the supervisor product in (7) into smaller groups
of supervisor products of manageable state sizes. If all such
groups prove to be equal for both the purely nonblocking and the
nonblocking and maximally permissive control, then the purely
nonblocking supervisor synthesis also results in maximally per-
missive control. Hence, in case maximal permissiveness can be
verified by such comparison, the smaller supervisors can be im-
plemented while still achieving maximally permissive control.
Since our example exhibits this property, it is possible to choose
the smallest supervisor with an accumulated state count of 3946
for maximally permissiveness.4

VII. CONCLUSION

The abstraction-based synthesis of supervisors for large-scale
discrete event systems (DES) is a powerful tool to cope with the
potential state space explosion. In this respect, appropriate ab-
stractions have to be chosen so as to guarantee desirable prop-
erties of the closed-loop system such as nonblocking behavior
or maximal permissiveness.

4Note that the specification for the rail transport system in this application is
different from the specification in Section VI-B.

In this paper, natural projections with certain properties serve
as abstractions in a hierarchical and decentralized control archi-
tecture. As an extension to earlier work that introduces natural
observers and msa-observers as sufficient conditions for non-
blocking control, our work proposes local control consistency as
a novel sufficient condition for maximally permissive control. In
particular, it is shown that local control consistency is less con-
servative than output control consistency which was previously
used to achieve maximal permissiveness.

Furthermore, we develop a concise method for the computa-
tion of natural projections that fulfill the derived sufficient con-
ditions for nonblocking and maximally permissive hierarchical
and decentralized control. To this end, we first point out that the
natural observer extension algorithm by Feng and Wonham can
be generalized to determine natural projections with properties
that can be formulated as quasi-congruences. Then, we show
that not only the natural observer condition and the msa-ob-
server condition but also local control consistency can be stated
in terms of a quasi-congruence. Hence, it is possible to em-
ploy this generalized extension algorithm for the computation
of natural projections that are nonblocking (natural observers
or msa-observers) and maximally permissive (locally control
consistent).

The effectiveness of our approach is illustrated by the
supervisor synthesis for several subsystems of a manufac-
turing system. It is observed that the condition on the natural
projections that should preferably be employed depends on
each specific application. In our manufacturing system, the
msa-observer condition yields abstractions on smaller state
spaces. Moreover, it is verified that adding the requirement of
locally control consistent natural projections for maximally
permissive control potentially leads to larger state spaces of
the abstracted plant models. This result illustrates the trade-off
between the size of the resulting supervisor and the possible
conservativeness of the control.

APPENDIX A
PROOF OF LEMMA 4.2

We define and state the following Lemma.
Lemma A.1([23], [Lemma A.8)]: Let , let

, , , , , be mutually controllable, and
let and s.t. . Then, for all

s.t. , it holds that .
Using Lemma A.1, Lemma 4.2 can be proved.

Proof: Let . Then,
, for , and

s.t. and .
Now assume that . Then,
for some , , i.e., there is a

s.t. but . Let

, where ,

and , . Because
of mutual controllability, repeated application of Lemma A.1
yields but since . This
violates the assumption ,
and hence, .

736 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 4, APRIL 2011

APPENDIX B
PROOF OF PROPOSITION 5.1

We first establish three lemmas.
Lemma B.1: Let be a quasi-congruence on ,

and , . Then implies
1) ;
2) .

Proof: To show 1), assume that s.t. . We
show that by induction. Let , where

and for . As the induction base,
we observe that , and

. Now, assume that for some ,
, and .

Since , there is . As is a quasi-
congruence for , there must be s.t.

. Hence, ,
, and . But then, induction on

the length of shows that .
For 2), let for some . Thus, there is

s.t. exists and .
Since is a quasi-congruence for , there must be

s.t. . Hence, .
Lemma B.2: Let be an -observer and lcc w.r.t.

and . Define s.t. for any ,
and , with and , it holds
that . Then,
is a quasi-congruence for .

Proof: Let , s.t. , and ,
s.t. and .

First assume that s.t. . Then, there are ,
s.t. and . It

has to be shown that s.t. .
Assume that s.t. . Since

, and ,
also . Since is an -ob-
server, there are , s.t.

and .
Then, . Hence, with

, we have that . As
was arbitrary, this implies that is a quasi-congruence for

.
Now assume that for some . Then,

there are , and s.t.
and exists. It has been shown above that

there is s.t. . It remains to verify
that . Since and

, also .
Since is lcc w.r.t. and , there must be

s.t. exists. But then, , i.e.,
is also a quasi-congruence for . As

was arbitrary, is a quasi-congruence for
.

Lemma B.3: Assume that 1) and 2) in Lemma B.1 are ful-
filled for , , and is an -observer and lcc w.r.t.

and . Then .
Proof: Let , s.t. , ,

and assume that . We have to show that
s.t. .

Since is an -observer, there is s.t.
and . Hence, , and Lemma

B.1 1) implies that . Thus, there is s.t.
and . That is,

, and hence .
We now prove Proposition 5.1.

Proof: Following Lemma B.2, we have to show that
. Let be a quasi-congruence for and

for , . Lemma B.1 suggests that 1) and 2) hold
and Lemma B.3 implies that , i.e., .
Hence, is the coarsest quasi-congruence for .

REFERENCES

[1] H. Zhong and W. Wonham, “On the consistency of hierarchical super-
vision in discrete-event systems,” IEEE Trans. Autom. Control, vol. 35,
no. 10, pp. 1125–1134, Oct. 1990.

[2] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-
event systems,” Discrete Event Dyn. Syst.: Theor. Appl., vol. 6, no. 3,
pp. 241–273, 1996.

[3] P. Hubbard and P. E. Caines, “Dynamical consistency in hierarchical
supervisory control,” IEEE Trans. Autom. Control, vol. 47, no. 1, pp.
37–52, Jan. 2002.

[4] R. Leduc, M. Lawford, and W. Wonham, “Hierarchical interface-based
supervisory control—part II: Parallel case,” IEEE Trans. Autom. Con-
trol, vol. 50, no. 9, pp. 1336–1348, Sep. 2005.

[5] B. Gaudin and H. Marchand, “Safety control of hierarchical syn-
chronous discrete event systems: A state-based approach,” in Proc.
Mediterranean Conf. Control Autom., 2005, pp. 889–895.

[6] A. de Cunha and J. Cury, “Hierarchical supervisory control based on
discrete event systems with flexible marking,” IEEE Trans. Autom.
Control, vol. 52, no. 12, pp. 2242–2253, Dec. 2007.

[7] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional syn-
thesis of maximally permissive supervisors using supervision equiv-
alence,” Discrete Event Dyn. Syst.: Theor. Appl., vol. 17, no. 4, pp.
475–504, 2007.

[8] K. Schmidt, T. Moor, and S. Perk, “Nonblocking hierarchical control
of decentralized discrete event systems,” IEEE Trans. Autom. Control,
vol. 53, no. 10, pp. 2252–2265, Oct. 2008.

[9] S. Perk, T. Moor, and K. Schmidt, “Controller synthesis for an I/O-
based hierarchical system architecture,” in Workshop Discrete Event
Syst., 2008, pp. 474–479.

[10] L. Feng and W. Wonham, “Supervisory control architecture for dis-
crete-event systems,” IEEE Trans. Autom. Control, vol. 53, no. 6, pp.
1449–1461, Jun. 2008.

[11] R. Hill, D. Tilbury, and S. Lafortune, “Modular supervisory control
with equivalence-based conflict resolution,” in Proc. Amer. Control
Conf., 2008, pp. 491–498.

[12] J. Komenda and J. van Schuppen, “Coordination control of discrete-
event systems,” in Workshop Discrete Event Syst., 2008, pp. 9–15.

[13] R. Su, J. van Schuppen, and J. Rooda, “Supervisor synthesis based
on abstractions of nondeterministic automata,” in Workshop Discrete
Event Syst., 2008, pp. 412–418.

[14] K. Schmidt and T. Moor, “Marked-string accepting observers for the
hierarchical and decentralized control of discrete event systems,” in
Workshop Discrete Event Syst., 2006, pp. 413–418.

[15] L. Feng and W. Wonham, “On the computation of natural observers in
discrete-event systems,” Discrete Event Dyn. Syst.: Theor. Appl., vol.
20, no. 1, pp. 63–102, Mar. 2010.

[16] K. C. Wong and W. M. Wonham, “On the computation of observers in
discrete-event systems,” Discrete Event Dyn. Syst.: Theor. Appl., vol.
14, no. 1, pp. 55–107, 2004.

[17] K. Schmidt and C. Breindl, “On maximal permissiveness of hierar-
chical and modular supervisory control approaches for discrete event
systems,” in Workshop Discrete Event Syst., 2008, pp. 462–467.

[18] P. J. Ramadge and W. M. Wonham, “The control of discrete event sys-
tems,” in Proc. IEEE, Special Issue Discrete Event Dyn. Syst., 1989,
vol. 77, pp. 81–98.

[19] W. M. Wonham, “Supervisory Control of Discrete-Event Systems,”
Dept. Elect. Comp. Eng., Univ. Toronto, Toronto, ON, Canada, 2008
[Online]. Available: http://www.control.utoronto.ca/DES

SCHMIDT AND BREINDL: MAXIMALLY PERMISSIVE HIERARCHICAL CONTROL 737

[20] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems. Secaucus, NJ: Springer-Verlag, 2006.

[21] K. Schmidt, J. Reger, and T. Moor, “Hierarchical control of struc-
tural decentralized DES,” in Workshop Discrete Event Syst., 2004, pp.
289–294.

[22] R. Hill and D. Tilbury, “Modular supervisory control of discrete-event
systems with abstraction and incremental hierarchical construction,” in
Workshop Discrete Event Syst., 2006, pp. 399–406.

[23] K. Schmidt, “Hierarchical Control of Decentralized Discrete Event
Systems: Theory and Application,” Ph.D. dissertation, Lehrstuhl
für Regelungstechnik, Universität Erlangen-Nürnberg, Nürnberg,
Germany, 2005.

[24] J.-C. Fernandez, “An implementation of an efficient algorithm for
bisimulation equivalence,” Sci. Comp. Programming, vol. 13, pp.
219–236, 1990.

[25] S.-H. Lee and K. C. Wong, “Structural decentralised control of concur-
rent DES,” Eur. J. Control, vol. 35, pp. 1125–1134, 2002.

[26] “libFAUDES Software Library for Discrete Event Systems,” lib-
FAUDES., Tech. Rep., 2006–2010 [Online]. Available: www.rt.eei.
uni-erlangen.de/FGdes/faudes

Klaus Schmidt (M’11) received the Diploma
and Ph.D. degrees in electrical, electronic, and
communication engineering from the University of
Erlangen-Nürnberg, Germany, in 2002 and 2005,
respectively.

He is currently an Assistant Professor with the
Department of Electronic and Communication En-
gineering, Cankaya University, Ankara, Turkey. His
research interests include controller synthesis and
failure diagnosis for discrete event systems, indus-
trial automation systems, vehicular communication

networks, and industrial project control.

Christian Breindl received the Diploma degree in
mechatronics from the University of Erlangen-Nürn-
berg, Germany, in 2007.

He is currently a Research Assistant at the Institute
for Systems Theory and Automatic Control, Univer-
sity of Stuttgart, Germany. His current research inter-
ests are in the field of systems biology with focus on
modeling and analysis of gene regulatory networks.

