Extension of spatiotemporal chaos in glow discharge-semiconductor systems
Marat Akhmet, Ismail Rafatov, and Mehmet Onur Fen

Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 24, 043127 (2014); doi: 10.1063/1.4902077
View online: http://dx.doi.org/10.1063/1.4902077
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/24/4?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Spatiotemporal chaos arising from standing waves in a reaction-diffusion system with cross-diffusion

Synchronization in networks of spatially extended systems
Chaos 18, 023133 (2008); 10.1063/1.2940685

Dynamics of the chain of forced oscillators with long-range interaction: From synchronization to chaos
Chaos 17, 043124 (2007); 10.1063/1.2819537

Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection
Chaos 17, 023101 (2007); 10.1063/1.2671184

Localized error bursts in estimating the state of spatiotemporal chaos
Chaos 14, 1042 (2004); 10.1063/1.1788091
Extension of spatiotemporal chaos in glow discharge-semiconductor systems

Marat Akhmet,1,a) Ismail Rafatov,2 and Mehmet Onur Fen1
1Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey
2Department of Physics, Middle East Technical University, 06800 Ankara, Turkey

(Received 19 June 2014; accepted 6 November 2014; published online 19 November 2014)

Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528–4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. Sijačić U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004)]. © 2014 AIP Publishing LLC.

Spatiotemporal chaos is one of the complicated structures observed in spatially extended dynamical systems and it is characterized by chaotic properties both in time and space coordinates. The existence of a positive Lyapunov exponent can be used to detect spatiotemporal complexity, which can be observed, for example, in liquid crystal light valves, electroconvection, cardiac fibrillation, chemical reaction-diffusion systems, and fluidized granular matter. Spatially extended dynamical systems often serve as standard models for the investigation of complex phenomena in electronics. A special interest is directed towards pattern-formation phenomena in electronic media, mainly the nonlinear gas discharge systems. It is clear that chaos can appear as an intrinsic property of systems as well as through couplings. The interaction of spatially extended systems is important for neural networks, reentry initiation in coupled parallel fibers, thermal convection in multilayered media and for systems consisting of several weakly coupled spatially extended systems such as the electrohydrodynamic convection in liquid crystals. In the present study, we numerically verify the appearance of cyclic chaotic behavior in unidirectionally coupled glow discharge-semiconductor systems. The chaos in the response system is obtained through period-doubling cascade of the drive system such that it admits infinitely many unstable periodic solutions and sensitivity is present. Previously, the extension of chaos through couplings has been considered by synchronization.1,3–8 The task is difficult for partial differential equations because of the choice of connecting parameters.9–11 Kocarev et al.9 suggested a useful time-discontinuous monitoring for synchronization, but our choice is based on a finite dimensional connection. It is demonstrated that the present results cannot be reduced to any one in the theory of synchronization of chaos. The technique of chaos extension suggested in the present study can be related to technical problems,12,13 where collectives of microdischarge systems are considered and in models which appear in neural networks, hydrodynamics, optics, chemical reactions, and electrical oscillators. Stabilization of multidimensional periodical regimes can be useful in applications of the glow discharge systems in conventional and energy saving lamps, beamers, flat TV screens, etc.

I. INTRODUCTION

The investigations of chaos theory for continuous-time dynamics started due to the needs of real world applications, especially with the studies of Poincaré, Cartwright and Littlewood, Levinson, Lorenz, and Ueda. Chaotic dynamics has high effectiveness in the analysis of electrical processes of neural networks and can be used for optimization and self-organization problems in robotics. The reason for that is the opportunities provided by the dynamical structure of chaos.

Starting from the primary investigations, chaos has been found as an internal property of systems, and studies in this sense have prolonged until today, for example, by the construction of discrete maps. At the very beginning of the chaos analysis, one has to mention the Smale Horseshoes technique and symbolic dynamics. Another opportunity to reveal chaotic dynamics is the usage of bifurcation diagrams. If one considers a mechanical or electrical system and perturb it by an external force which is bounded, periodic or almost periodic, then the forced system can produce a behavior with a similar property, boundedness/periodicity/almost periodicity. A reasonable question appears whether it is possible to use a chaotic force to obtain the same type of complexity in physical systems.

To meet the challenge, we introduced rigorous description of chaotic force as a function or a set of functions and
described the input-output mechanism for ordinary differential equations in the studies.35–48 It was rigorously proved that an irregular behavior can follow the chaotic force very likely as regular motions do. We have applied the machinery to mechanical and electrical systems with a finite number of freedom35–46 as well as to neural networks.47,48 In the present study, we apply the theory to unidirectionally coupled glow discharge-semiconductor (GDS) systems.

A. Preliminaries of the chaos extension

Chaotic dynamics can appear in systems as an intrinsic property and it can be extended through interactions. In the literature, an effective and unique way of the chaos extension from one system to another has been suggested within the scope of generalized synchronization,1,3–7 which characterizes the dynamics of a response system that is driven by the output of a chaotic driving system. Suppose that the dynamics of the drive and response systems are governed by the following systems with a skew product structure

\begin{align}
\dot{x} &= F(x) \quad (1.1) \\
\dot{y} &= G(y, H(x)), \quad (1.2)
\end{align}

respectively, where $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Generalized synchronization is said to occur if there exist sets I_x, I_y of initial conditions and a transformation ϕ, defined on the chaotic attractor of (1.1), such that for all $x(0) \in I_x$ and $y(0) \in I_y$, the relation $\lim_{t \to \infty} \|y(t) - \phi(x(t))\| = 0$ holds. In that case, a motion which starts on $I_x \times I_y$ collapses onto a manifold $M \subset I_x \times I_y$ of synchronized motions. The transformation ϕ is not required to exist for the transient trajectories. When ϕ is the identity, the identical synchronization takes place.7,8

The synchronization of a large class of unidirectionally coupled chaotic partial differential equations was deeply investigated in Refs. 9 and 10, where the synchronization was achieved by applying the driving signals only at a finite number of space points. The synchronization of spatiotemporal chaos in a pair of complex Ginzburg-Landau equations was performed in Ref. 11 for the case when all space points are continuously driven. In the present study, we use perturbations to a single coordinate of an infinite dimensional response system, which is non-chaotic in the absence of driving, to obtain chaotic motions in the system.

It has not been investigated whether the response system admits the same type of chaos with the drive system in the theory of chaos synchronization yet. The replication of chaos with specific types such as Devaney,49 Li-Yorke22 and period-doubling cascade50–52 was investigated for drive-response couples for the first time in our papers.35–48

In the study,35 we considered a system of the form

\begin{equation}
\dot{u} = K(u), \quad (1.3)
\end{equation}

where $K : \mathbb{R}^n \to \mathbb{R}^n$ is a continuously differentiable function. We supposed that system (1.3) possesses an orbitally stable limit cycle and perturbed it with solutions of a chaos generating system, in the form of (1.1), and set up the system

\begin{equation}
\dot{y} = K(y) + \mu M(x), \quad (1.4)
\end{equation}

where μ is a nonzero number and $M : \mathbb{R}^m \to \mathbb{R}^n$ is a continuous function. The extension of sensitivity and chaos through period-doubling cascade for the coupled system (1.1)–(1.4) were rigorously proved in Ref. 35. As a result, we achieved chaotic cycles, that is, motions which behave cyclically and chaotically, simultaneously.

The rich experience of chaos expansion in finite dimensional spaces provides a confidence that our approach mentioned in Ref. 35 has to work also in infinite dimensional spaces. In this paper, we numerically observe the presence of orbitally stable limit cycles in the 2–dimensional projections of the infinite dimensional space as well as their deformation to chaotic cycles under chaotic perturbations. By using the technique presented in Ref. 35, one can elaborate the results of the present study from the theoretical point of view. Although couplings of GDS systems have not been performed in the literature yet, our results reveal the opportunity of chaos extension in such systems.

Summarizing, electronic systems are important tools for synchronization and chaos extension. In this paper, we make use of our previous approach35 to extend chaos in unidirectionally coupled GDS systems.

B. Description of the GDS system model

Our GDS was previously studied both theoretically and experimentally in Refs. 2, 53–67. It represents a planar plasma layer coupled to a planar semiconductor layer, which are sandwiched between two planar electrodes to which a DC voltage is applied (see Fig. 1). We used a one-dimensional fluid model for this system, where any pattern formation in the transversal direction is excluded and only the single dimension normal to the layers is resolved. For the

![FIG. 1. A cross section of a planar discharge cell: it consist of a metal anode, a gas layer, a high-ohmic cathode, and another metal contact. The subscripts g and s refer to the gas and semiconductor regions.](image-url)
gas discharge, the model takes into account electron and ion drift in the electric field, bulk impact ionization and secondary emission from the cathode as well as space charge effects. The semiconductor is approximated with a constant conductivity.

The gas-discharge part of the model consists of continuity equations for two charged species, namely, electrons and positive ions with particle densities \(n_e \) and \(n_i \)

\[
\begin{align*}
\frac{\partial n_e}{\partial t} + \nabla \cdot \mathbf{J}_e &= S_e, \quad (1.5) \\
\frac{\partial n_i}{\partial t} + \nabla \cdot \mathbf{J}_i &= S_i, \quad (1.6)
\end{align*}
\]

which are coupled to Poisson’s equation for the electric field in electrostatic approximation

\[
\nabla \cdot \mathbf{E} = \frac{\epsilon}{\epsilon_0} (n_i - n_e), \quad \mathbf{E} = -\nabla \Phi. \quad (1.7)
\]

Here, \(\Phi \) is the electric potential, \(\mathbf{E} \) is the electric field in the gas discharge, \(\epsilon \) is the elementary charge, and \(\epsilon_0 \) is the dielectric constant. The vector fields \(\mathbf{J}_e \) and \(\mathbf{J}_i \) are the particle flux densities, that in simplest approximation are described by drift only. (In general, particle diffusion \(D_{ej} \nabla n_{ej} \) could be included.) The drift velocities are assumed to depend linearly on the local electric field with mobilities \(\mu_e \gg \mu_i \)

\[
\mathbf{J}_e = -\mu_e n_e \mathbf{E}, \quad \mathbf{J}_i = \mu_i n_i \mathbf{E}, \quad (1.8)
\]

hence the total electric current in the discharge is

\[
\mathbf{J} = \epsilon_0 \frac{\partial}{\partial r} \mathbf{E} + \epsilon (\mathbf{J}_i - \mathbf{J}_e) = \epsilon_0 \frac{\partial}{\partial r} \mathbf{E} + \epsilon (\mu_i n_i + \mu_e n_e) \mathbf{E}. \quad (1.9)
\]

Two types of ionization processes are taken into account: the \(\alpha \) process of electron impact ionization in the bulk of the gas, and the \(\gamma \) process of electron emission by ion impact onto the cathode. In a local field approximation, the \(\alpha \) process determines the source terms in the continuity Eqs. (1.5) and (1.6)

\[
S_e = S_i = |\Gamma_e| \alpha_0 \alpha(|\mathbf{E}|/\epsilon_0), \quad (1.10)
\]

where we use the classical Townsend approximation

\[
\alpha(|\mathbf{E}|/\epsilon_0) = \exp(-\epsilon_0/|\mathbf{E}|). \quad (1.11)
\]

The effect of the semiconductor layer with thickness \(d_s \), conductivity \(\sigma_s \), dielectric constant \(\epsilon_s \) is described by the external circuit equation

\[
\partial_t U = \frac{U_{tot} - U - R_s J_s}{T_s}, \quad (1.12)
\]

where \(U_{tot} \) is the applied voltage, \(U = \int_0^{d_s} E \, dZ \) is the voltage over the gas discharge which is the electric field \(E \) integrated over the height \(d_s \) of the discharge, \(R_s = d_s/\sigma_s \) is the resistance of the semiconductor layer, where \(\sigma_s \) is its conductivity, and \(T_s = \epsilon_s \epsilon_0 \tau_s \) is the Maxwell relaxation time of the semiconductor with dielectric constant \(\epsilon_s \).

Following the traditions of the synchronization of chaotic systems, we will call the coupled GDS systems as the drive and response systems.

The goal of our investigation is to extend the spatiotemporal chaos of a drive GDS system to a response GDS system by means of a special connection mechanism between the systems. In order to make our present study self-sufficient, we complete the chaos analysis of the GDS system, which was initiated in Refs. 2 and 53. The method of the analysis, as well as the connection mechanism are our theoretical suggestions,35–48

The chaos obtained through period-doubling cascade is under investigation in the present study. In other words, the existence of infinitely many unstable periodic solutions and the presence of sensitivity are considered. One of the advantages of our approach is the controllability of the extended chaos.7,35,43,44,68 It is possible to stabilize an unstable periodic solution of the response GDS system by controlling the chaos of the drive system. The presented technique is applicable to large number interconnected GDS systems and the control of the global chaos can also be achieved. This approach can be useful for applications of the gas discharge systems in conventional and energy saving lamps, beamers, flat TV screens, etc.,12,13

C. Formulation of the model in dimensionless form

The dimensional analysis is performed essentially as in Refs. 2 and 53. In dimensional units, \(Z \) parametrizes the direction normal to the layers. The anode of the gas discharge is at \(Z = 0 \), the cathode end of the discharge is at \(Z = d_e \), and the semiconductor extends up to \(Z = d_e + d_s \).

When diffusion is neglected, the ion current and the ion density at the anode vanish. This is described by the boundary condition on the anode \(Z = 0 \)

\[
\Gamma_i(0, t) = 0 \Rightarrow n_i(0, t) = 0. \quad (1.13)
\]

The boundary condition at the cathode, \(Z = d_e \), describes the \(\gamma \)-process of secondary electron emission

\[
|\Gamma_e(d_e, t)| = |\Gamma_i(d_e, t)| \Rightarrow \mu_e n_e(d_e, t) = |\gamma| \mu_i n_i(d_e, t). \quad (1.14)
\]

Finally, a DC voltage \(U_{tot} \) is applied to the system determining the electric potential on the boundaries

\[
\Phi(0, t) = 0, \quad \Phi(d_e + d_s, t) = -U_{tot}. \quad (1.15)
\]

Here, the first potential vanishes due to gauge freedom. We denote the potential at the interface between the semiconductor and the gas discharge by \(-U\) so that \(U_{tot} = U \).

Let us introduce the intrinsic parameters of the system as \(t_0 = 1/\mu_e \epsilon_0, \quad Z_0 = \frac{|\gamma| \epsilon_0 \epsilon_s}{\epsilon_0}, \quad n_0 = \mu_i n_i(0, t) \). In Refs. 2 and 53 the problem was reduced to one spatial dimension \(z \) such that the GDS system takes the following dimensionless form

\[
\begin{align*}
\partial_t \sigma - \partial_z (\mathcal{E} \sigma) &= \sigma \mathcal{E} \alpha(\mathcal{E}), \\
\partial_t \rho + \mu_i \partial_z (\mathcal{E} \rho) &= \sigma \mathcal{E} \alpha(\mathcal{E}), \\
\partial_z \mathcal{E} &= \rho - \sigma, \quad \mathcal{E} = -\partial_\tau \phi,
\end{align*}
\]

where the dimensionless time, coordinates and fields are

\[
z = \frac{Z}{Z_0}, \quad \tau = \frac{t}{t_0}, \quad \sigma(z, \tau) = \frac{n(Z/Z_0)}{n_0}, \quad \rho(z, \tau) = \frac{n_i(Z/Z_0)}{n_0}, \quad \mathcal{E}(z, \tau) = \frac{E(Z/Z_0)}{E_0},
\]

\[
\phi(z, \tau) = \frac{\Phi(Z/Z_0)}{E_0}, \quad \alpha(\mathcal{E}) = c^{-1}/|\mathcal{E}|.
\]

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 144.122.176.229 On: Fri, 21 Nov 2014 09:08:13
The intrinsic dimensionless parameters of the gas discharge are the mobility ratio \(\mu \) of electrons and ions and the length ratio \(L \) of discharge gap width and impact ionization length. That is, \(\mu = \frac{\mu_0}{\mu_e} \) and \(L = \frac{d_e}{Z_0} \). The boundary conditions become

\[
\begin{align*}
\rho(0, \tau) &= 0, \\
\sigma(L, \tau) &= \gamma \mu \rho(L, \tau), \\
\phi(0, \tau) &= 0, \\
\phi(L, \tau) &= -U,
\end{align*}
\]

and the external circuit is described by

\[
\partial_\tau U = \frac{U_{\text{tot}} - U - \mathcal{R}\mathcal{J}}{\tau_s}, \tag{1.18}
\]

where the total applied voltage is rescaled as \(U_{\text{tot}} = U_{\text{tot}}/(E_0Z_0) \), dimensionless voltage \(U(\tau) = \int_0^\tau \mathcal{E} \, dz \), time scale \(\tau_s = T_J/\lambda_0 \), resistance \(\mathcal{R} = R_e \mu_e n_0/\lambda_0 \), and spatially conserved total current \(\mathcal{J}(\tau) = \partial_\tau \mathcal{E} + \mu \mathcal{E} + \sigma \mathcal{E} \).

We consider a regime corresponding to a transition between Townsend and glow discharge. The parameters are taken as in the experiments\(^{63}\) and in our previous work.\(^2\) The discharge is in nitrogen at 40 mbar, in a gap of 1.4 mm. We used the ion mobility \(\mu_i = 23.33 \text{ cm}^2/\text{V s} \) and electron mobility \(\mu_e = 6666.6 \text{ cm}^2/\text{V s} \), therefore, the mobility ratio is \(\mu = \mu_i/\mu_e = 0.0035 \). The secondary emission coefficient was taken as \(\gamma = 0.08 \). The applied voltages \(U_{\text{tot}} \) are in the range of 513–570 V. For \(\lambda_0 = \lambda_0 = 27.8 \mu\text{m} \) and for \(E_0 = E_0 = 10.3 \text{kV/cm} \), we used values from Ref.\(^{58} \). The semiconductor layer consists of 1.5 mm of GaAs with dielectric constant \(\varepsilon_r = 13.1 \) and conductivity \(\sigma_r = (2.6 \times 10^5 \text{ \Omega cm})^{-1} \). Corresponding dimensionless parameters are \(L = 50 \), \(\mathcal{R} = 30597 \), \(\tau_s = 7435 \), and a total voltage range \(U_{\text{tot}} \) between 17.7 and 20.03.

II. COUPLED CHAOTIC GDS SYSTEMS

In the present section, we will extend the spatiotemporal chaos of a drive GDS system through utilizing its voltage over the gas discharge as a chaotic control applied to the electric circuit of a response GDS system. In the coupling, the voltage over the discharge of the drive system is applied as a perturbation to the circuit equation of the response system. The presence of chaos in the response system will be shown numerically. Moreover, we will compare our results with generalized synchronization.

The full analysis of the spatiotemporal chaos in the GDS system \((1.16)-(1.18)\) is provided in the Appendix, where the bifurcation diagram as well as the chaotic behaviors in the voltage, electric field, electron density and ion density of the system are represented. According to these results, the GDS system

\[
\begin{align*}
\partial_\tau \sigma - \partial_\tau (\mathcal{E} \sigma) &= \sigma \mathcal{E} \mathcal{X} (\mathcal{E}), \\
\partial_\tau \rho + \mu \partial_\tau (\mathcal{E} \rho) &= \sigma \mathcal{E} \mathcal{X} (\mathcal{E}), \\
\partial_\tau \mathcal{E} &= \rho - \sigma, \quad \mathcal{E} = -\partial_\tau \phi, \\
\partial_\tau U &= \frac{2 \lambda - U - \mathcal{R}\mathcal{J}}{\tau_s}, \tag{2.1}
\end{align*}
\]

is chaotic, and it will be accompanied by the boundary conditions

\[
\begin{align*}
\rho(0, \tau) &= 0, \\
\sigma(L, \tau) &= \gamma \mu \rho(L, \tau), \\
\phi(0, \tau) &= 0, \\
\phi(L, \tau) &= -U.
\end{align*}
\]

We will take into account \((2.1)\) as the drive system.

The solutions of \((2.1)\) will be used as a perturbation for the response GDS system in the form

\[
\begin{align*}
\delta \partial_\tau \mathcal{E} - \partial_\tau (\mathcal{E} \delta \mathcal{E}) &= \delta \mathcal{E} \mathcal{X} \mathcal{E}, \\
\partial_\tau \delta \rho + \mu \partial_\tau (\mathcal{E} \delta \rho) &= \delta \mathcal{E} \mathcal{X} \mathcal{E}, \\
\partial_\tau \mathcal{E} &= \rho - \delta, \quad \mathcal{E} = -\partial_\tau \phi, \\
\partial_\tau \mathcal{V} &= \mathcal{V}_{\text{tot}} - \mathcal{V} - \mathcal{R}\mathcal{J} + \delta \mathcal{U}(\tau), \tag{2.2}
\end{align*}
\]

with the boundary conditions

\[
\begin{align*}
\rho(0, \tau) &= 0, \\
\sigma(L, \tau) &= \gamma \mu \rho(L, \tau), \\
\phi(0, \tau) &= 0, \\
\phi(L, \tau) &= -V.
\end{align*}
\]

In system \((2.2)\), \(\delta \) is a nonzero number and the term \(\partial_\tau \mathcal{U}(\tau)/\tau_s \) is the perturbation from the drive system \((2.1)\).

It is shown in the Appendix for the parameter value \(U_{\text{tot}} = 17.7 \) that the projection of the attractor of system \((1.16)-(1.18)\) on the domain of Eq. \((1.18)\) is a stable limit cycle (see Fig. 7). That is, in the absence of driving, the response system \((2.2)\) with \(\mathcal{V}_{\text{tot}} = 17.7 \) does not possess chaos. We will numerically show that the response GDS system possesses chaotic motions near the limit cycle, provided that the driving effect is included. Our results are theoretically based on the study,\(^{35}\) where we have proved that if the drive system admits infinitely many unstable periodic solutions and sensitivity, then the response system does the same. Since the attractor exists in system \((1.16)-(1.18)\) with \(U_{\text{tot}} = 17.7 \), one can conclude by the extension of our results presented in Ref.\(^{35}\) that if the number \(|\delta| \) in Eq. \((2.2)\) is sufficiently small, then system \((2.2)\) possesses cyclic chaos on the \(\mathcal{V} - \mathcal{J} \) plane.

Let us take \(\mathcal{V}_{\text{tot}} = 17.7 \) and \(\delta = 0.047 \) in the response GDS system \((2.2)\). Using the solution of the drive system shown in Figures 8–10, we depict in Figure 2 the projection of
a chaotic solution of (2.2) on the $V - j$ plane. The figure reveals that the response GDS system possesses motions that behave chaotically around the limit cycle of system (1.16)–(1.18) with $U_{tot} = 17.7$. Moreover, to support the presence of chaos in the response system, we depict in Figure 3 the time series of the V coordinate. The amplitude ranges 15–16.6 and 7.4–8.6 are used in Figures 3(b) and 3(c), respectively, to increase the visibility of chaotic behavior.

Figures 4(a)–4(c) depict, respectively, the chaotic behaviors in the electric field, electron density and ion density of system (2.2). The figure supports the presence of chaos in the response GDS system such that it is the expansion of the one which takes place on the $V - j$ plane.

Now, let us compare our results with generalized synchronization (GS). According to Kocarev and Parlitz (1996), GS occurs for the coupled systems (1.1) and (1.2) if and only if for all $x_0 \in \mathcal{L}$, $y_{10}, y_{20} \in \mathcal{L}$, the asymptotic stability criterion $\lim_{t \to \infty} ||y(t, x_0, y_{10}) - y(t, x_0, y_{20})|| = 0$ holds, where $y(t, x_0, y_{10})$ and $y(t, x_0, y_{20})$ denote the solutions of (1.2) with the initial data $y(0, x_0, y_{10}) = y_{10}$, $y(0, x_0, y_{20}) = y_{20}$ and the same $x(t), x(0) = x_0$. This criterion is a mathematical formulation of the auxiliary system approach. We shall make use of the auxiliary system approach to demonstrate the absence of generalized synchronization in the coupled system (2.1)–(2.2).

We introduce the auxiliary system

$$
\begin{align*}
&\partial_t \tilde{\sigma} - \partial_z \tilde{E} \tilde{\sigma} = \tilde{E} \partial_z \tilde{\sigma}, \\
&\partial_t \tilde{\rho} + \mu \partial_z \tilde{\rho} = \tilde{E} \partial_z \tilde{\rho}, \\
&\partial_t \tilde{E} = \tilde{\rho} - \tilde{\sigma}, \quad \tilde{E} = -\partial_z \tilde{\phi}, \\
&\partial_t \mathcal{W} = \frac{17.7 - \mathcal{W} - \mathcal{R} \tilde{j} + 0.047 U(t)}{\tau},
\end{align*}
$$

(2.3)

with the boundary conditions

$$
\begin{align*}
\tilde{\rho}(0, \tau) &= 0, \\
\tilde{\sigma}(L, \tau) &= \gamma \mu \tilde{\rho}(L, \tau), \\
\tilde{\phi}(0, \tau) &= 0, \quad \tilde{\phi}(L, \tau) = -\mathcal{W}.
\end{align*}
$$

FIG. 4. Time evolution of profiles of the (a) electric field \tilde{E}, (b) electron density \tilde{n}_e, and (c) ion density \tilde{n}_i support the existence of chaotic motions around the periodic solution.

FIG. 5. Application of the auxiliary system approach reveals that the coupled systems (2.1) and (2.2) are not synchronized.

FIG. 3. The behavior of the V coordinate of system (2.2) is shown in (a). In (b) and (c), where the chaotic behavior is observable, the amplitudes are restricted to the ranges 15–16.6 and 7.4–8.6, respectively.
Making use of the solution $U(t)$ whose graph is represented in Figure 9 in both of the systems (2.2) and (2.3), we depict in Figure 5 the projection of the stroboscopic plot of system (2.2) and (2.3) on the V/W plane. The first 500 iterations are omitted in the simulation. The time interval $[0, 80 \times 10^6]$ is used and the time step is taken as $\Delta t = 5000$. Since the plot does not take place on the line $W = V$, we conclude that generalized synchronization is not achieved in the dynamics of the coupled system (2.1)–(2.2).

III. CONCLUSIONS

In the studies, we applied the input-output mechanism to systems that admit stable equilibrium points as well as limit cycles. It is theoretically proved in Ref. 35 that weak forcing of systems with stable limit cycles leads to the deformation of limit cycles to chaotic cycles, that is motions that behave chaotically around the limit cycle. This phenomenon cannot be explained by the theory of generalized synchronization, and it is also used in the present study. In the electrical sense, the chaotification of limit cycles is much more preferable than that procedure for asymptotic equilibria, because of the role of oscillations for electronics.

In this paper, we utilize GDS systems as drive and response electrical models. GDS systems were analyzed for a chaos presence in Ref. 2. We complete the analysis by constructing the full period-doubling bifurcation diagram to demonstrate that the drive system admits infinitely many unstable periodic solutions as well as sensitivity. However, this is only an auxiliary result. The main novelty of the present paper with respect to the previous studies is that we consider these systems which are coupled in a unidirectional way and prove that the chaos can be extended through couplings of GDS systems as well as in their arbitrary large collectives. This type of chaos extension may give benefits in further applications, for example, in economic lamps and flat TV screens. We suggest that our way of numerical analysis and special design of complexity can be further verified experimentally. It is worth noting that our approach is not generalized synchronization of chaos at all. This is demonstrated through the special method of auxiliary system approach.

ACKNOWLEDGMENTS

I. Rafatov acknowledges support by the Scientific and Technological Research Council of Turkey (TUBITAK), research Grant 212T164. The authors wish to express their sincere gratitude to the referees for the helpful criticism and valuable suggestions, which helped to improve the paper significantly.

APPENDIX: THE CHAOS IN THE DRIVE GDS SYSTEM

In this part, we will extend the results of Ref. 2 about the presence of chaos in GDS systems. In Ref. 2, only a finite number of period-doubling bifurcations were indicated. However, in the present study, we represent the occurrence of infinitely many period-doubling bifurcations by means of a bifurcation diagram and we definitely reveal the regions of regularity and chaoticity.
One can conclude from the bifurcation diagram that the system (1.16)–(1.18) possesses a stable periodic solution for $U_{tot} = 17.7$. The projection of a solution that approaches the stable limit cycle, which is the projection of the attractor of the global system (1.16)–(1.18) on the domain of (1.18) with $U_{tot} = 17.7$, is depicted in Figure 7. This result confirms the existence of an attractor as a periodic solution in the spatiotemporal equation.

The bifurcation diagram shown in Figure 6 confirms that the drive GDS system (2.1) is chaotic. The projection of a solution that approaches to U/C_0, (a) electron density n_e, and ion density n_i of (2.1) are pictured in Figures 10(a)–10(c), respectively. Figure 10 also confirms the presence of chaos in the drive system.

Figure 8. Moreover, the time series of the U coordinate of the same solution is shown Figure 9, where one can see the chaotic behavior.

The profiles of the electric field E, electron density n_e, and ion density n_i of (2.1) are pictured in Figures 10(a)–10(c), respectively. Figure 10 also confirms the presence of chaos in the drive system.

49. R. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley, United States of America, 1987).