Unbounded p-convergence in Lattice-Normed Vector Lattices

Abstract

A net x_{α} in a lattice-normed vector lattice (X,p,E) is unbounded p-convergent to $x\in X$ if $p(|x_{\alpha}-x|\wedge u)\stackrel{o}{\to} 0$ for every $u\in X_{+}$. This convergence has been investigated recently for $(X,p,E)=(X,|\cdot|,X)$ under the name of uo-convergence, for $(X,p,E)=(X,\|\cdot\|,\mathbb{R})$ under the name of un-convergence, and also for $(X,p,\mathbb{R}^{X^{*}})$, where p(x)[f]:=|f|(|x|), under the name uaw-convergence. We study general properties of the unbounded p-convergence.