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Chapter Objectives

• List chemical reactions important in the production and 
weathering of concrete.

• Explain that equilibrium is dynamic and that at equilibrium, the 
forward and backward reaction rates are equal.  State these 
ideas in your own words.

• Write the equilibrium constant expression for any reversible 
reaction.

• Calculate equilibrium constants from experimental data.
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Chapter Objectives

• Calculate equilibrium composition from initial data and the 
numerical value of the equilibrium constant.

• Calculate molar solubility from Ksp, or vice versa.

• Write equilibrium constants for the dissociation of weak acids
and weak bases and use them to calculate pH or the degree 
of ionization.

• Use Le Châtelier’s principle to explain the response of an 
equilibrium system to an applied stress.
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Chapter Objectives

• Calculate the new equilibrium composition of a system after 
an applied stress.

• Explain the importance of both kinetic and equilibrium 
considerations in the design of an industrial chemical process.
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Concrete Production and Weathering

• Traditionally, concrete has been composed of cement, water, 
and aggregate. 

• Modern concrete includes admixtures, which are additives 
that manipulate concrete into having desired properties.

• Most concrete uses Portland cement, which begins with the 
production of CaO from limestone.

• This process accounts for an estimated 5% of CO2

released into the atmosphere annually.

CaCO3  CaO  CO2
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Concrete Production and Weathering

• Cement also includes oxides of silicon and aluminum. 

• The combination is hydrated (water is added) when concrete is 
mixed. Three representative hydration reactions:

• These reactions release heat from net formation of bonds.

3CaO Al2O3  6H2O Ca3Al2 (OH)12

2CaO SiO2  x H2O Ca2SiO4  x H2O

3CaO  SiO2  (x 1)H2O Ca2SiO4  xH2O  Ca(OH)2
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Concrete Production and Weathering

Energy liberated from concrete hydration as a function of time.
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Concrete Production and Weathering

• The use of fly ash to partially replace Portland cement has 
become common recently.

• Fly ash is generated when coal is burned in power plants. 
Minerals present in the coal react with oxygen at high 
temperatures to produce fly ash.

• The average composition of fly ash is similar to Portland 
cement with the main components being SiO2, Al2O3, 
Fe2O3, and CaO.

• Fly ash typically consists of small spherical particles and 
can improve the strength of concrete.
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Concrete Production and Weathering

• Uses of admixtures

• Water reducers: lower the amount of water in the concrete 
without affecting the ability to work with it.

• Air entraining admixtures: improve concrete durability by 
stabilizing small air bubbles within the cement portion of 
concrete, particularly when exposed to freeze-thaw cycles.

• Waterproofers: combat effects of moisture.

• Accelerators or retardants: affect the speed of the 
hardening process.
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Concrete Production and Weathering

• Uses for admixtures and common chemicals that provide 
desired characteristics in concrete.
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Concrete Production and Weathering

• Weathering of concrete

• Freeze-thaw cycles

• Aging of concrete through carbonation, where CO2 from the air 
diffuses into the concrete.

• Interior of concrete appears pink with phenolphthalein 
indicator, which is pink under basic conditions.

• The exterior of concrete will not turn pink because carbon 
dioxide from air reacts with hydroxide to neutralize it.



Ca(OH)2 (s)   Ca2 (aq) + 2OH– (aq)

Ca2 (aq) + 2OH– (aq) CO2 (g)  CaCO3(s)  H2O(l ) 
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Chemical Equilibrium

• For complex chemical reactions, there are several variables 
that must be considered.

• The nature of the reactants, including the equilibrium that 
ultimately dictates the efficiency of the reaction, is the first 
issue that must be considered.

• Water in an open system, such as a glass, will slowly 
evaporate, decreasing the amount of liquid water over time.

• Water in a closed system, such as a covered glass, will 
establish a dynamic equilibrium, where the amount of liquid 
water present does not decrease over time.
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Forward and Reverse Reactions

• This photo sequence shows the water level in two glasses 
over the course of 17 days.  The glass on the left is covered.
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Forward and Reverse Reactions

• The equilibrium 
between liquid and 
vapor in a closed 
container is governed 
by the kinetics of 
evaporation and 
condensation.

• In (c), the two rates 
are equal.
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Forward and Reverse Reactions

• At the start of a chemical reaction, the reactant concentrations 
decrease over time, with a corresponding decrease in rate of the 
forward reaction.

• As the reactants are being consumed, the product concentration 
increases, with a corresponding increase in the rate of the reverse 
reaction. 

• When the rate of the forward reaction equals the rate of the reverse 
reaction, the reaction has reached equilibrium.

• Reactants form products at the same rate the products reform 
the reactants.

• The concentrations of reactants and products do not change 
over time at equilibrium. 
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Forward and Reverse Reactions

• A chemical system reaches equilibrium when the rate of the forward 
reaction equals the rate of the reverse reaction.

• The concentration of products and reactants does not change at 
equilibrium.
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Mathematical Relationships

• For any reaction involving reactants, R, and products, P, the 
chemical reaction is written at equilibrium with a double arrow.

• Rate laws for the forward and reverse reaction can be written.

R Ä  P

Ratefor  kfor[R]

Raterev  krev[P]
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Mathematical Relationships

• At equilibrium Ratefor = Raterev.

• Therefore 

• or

kfor[R]eq  krev[P]eq

kfor

krev


[P]eq

[R]eq
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Mathematical Relationships

• Since both kfor and krev are constants, and as long as 
temperature does not change, the left hand side of the 
equation is a constant.

• This means at a given temperature, the ratio [P]eq/[R]eq is also 
a constant.

kfor

krev


[P]eq

[R]eq
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Equilibrium Constants

• The amounts of reactants and products are determined using 
a mathematical model to describe equilibrium.

• A relationship exists between reactant and product 
concentrations at equilibrium (the ratio of products to 
reactants is constant at a given temperature).

• This relationship is often called the law of mass action.

21

The Equilibrium (Mass Action) Expression

• For the general chemical equation

• A ratio of concentrations, whether or not at equilibrium, can 
be defined, where Q is the reaction quotient.

• At equilibrium, Q = K, the equilibrium constant, and this ratio 
becomes the equilibrium expression.

a A + b B Ä  c C + d  D

Q = 
[C]c[D]d

[A]a[B]b

K  = 
[C]eq

c [D]eq
d

[A]eq
a [B]eq

b
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Example Problem 12.1

• Write the equilibrium expression for this reaction.

2SO2 (g)O2 (g) Ä 2SO3(g)
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Gas Phase Equilibria:  KP vs. KC

• Equilibrium expressions can be written for gas phase 
reactions using partial pressures.

• Kp is the equilibrium constant in terms of partial pressures.

a A(g) + b B(g) Ä  c C(g) + d  D(g)

KP  = 
(PC )eq

c (PD )eq
d

(PA )eq
a (PB)eq

b

24

Gas Phase Equilibria:  KP vs. KC

• The values of Kc and Kp are not necessarily equal.  The 
relationship between Kc and Kp is:

• ngas is moles of product gas minus the moles of reactant 
gas.

• Only when ngas = 0 does KP = KC.

• All equilibrium constants in this text are based on molar 
concentrations.  The subscript “c” will not be used.

KP  KC  RT
(ngas )
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Homogeneous and Heterogeneous Equilibria

• Homogeneous equilibria - the reactants and products are in 
the same phase, either gaseous or aqueous.

• Heterogeneous equilibria - the reactants and products are in 
different phases.

• Heterogeneous equilibrium expressions do not contain 
terms for solids and liquids.

• The concentration of a solid or liquid does not change 
because these substances are pure. 
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Homogeneous and Heterogeneous Equilibria

• For the decomposition reaction of CaCO3(s) forming CaO(s) 
and CO2(g), the equilibrium constant only depends on the 
CO2 concentration because CaCO3 and CaO are solids.
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Example Problem 12.2

• Calcium hydroxide will precipitate from solution by the 
following equilibrium:

• Write the equilibrium expression for this reaction.

Ca2 (aq) + 2OH– (aq) Ä  Ca(OH)2 (s)

28

Numerical Importance of the Equilibrium Expression

• The size of the equilibrium constant indicates the direction a 
chemical reaction will likely proceed.

• For large values of K, K >> 1, products are favored.

• For small values of K, K << 1, reactants are favored.

K  = 
[products]

[reactants]

29

Example Problem 12.3

• In Example Problem 12.2, we saw that hydroxide ions 
precipitate with calcium. Magnesium ions show similar 
behavior. The two pertinent equilibria are:

• Which ion is more likely to precipitate hydroxide from a 
solution, assuming roughly equal concentrations of calcium 
and magnesium ions?



Ca2 (aq) + 2OH– (aq) Ä  Ca(OH)2 (s)          K  1.3105

Mg2 (aq) + 2OH– (aq) Ä  Mg(OH)2 (s)        K  6.7 1011
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Mathematical Manipulation of Equilibrium Constants

• When reversing a chemical reaction by switching the 
reactants and products, the value of the equilibrium constant 
for the new reaction is the inverse of the value of the original 
equilibrium constant.



aA + bB Ä  cC + dD     K  = 
[C]eq

c [D]eq
d

[A]eq
a [B]eq

b

cC + dD Ä  aA + bB     K' = 
[A]eq

a [B]eq
b

[C]eq
c [D]eq

d

                                 K' 
1

K
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Adjusting the Stoichiometry of the Chemical Reaction

• If changes are made to the stoichiometry (represented by factor n), the 
changes affect the equilibrium expression.

• Multiply the stoichiometric coefficients in a chemical reaction by a 
factor n, the K for the new chemical equation, K, equals Kn.

• Equation 1 was multiplied by n = 1/2.

• K = Kn or K = K1/2



aA + bB Ä  cC + dD          K  = 
[C]eq

c [D]eq
d

[A]eq
a [B]eq

b

a

2
A + 

b

2
B Ä

 c

2
C + 

d

2
D     K' = 

[C]eq

c

2 [D]eq

d

2

[A]eq

a

2 [B]eq

b

2
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Example Problem 12.4

• Write equilibrium expressions for:

• the reaction written

• the reverse reaction

• the reaction as written with all coefficients in the equation 
halved

N2 (g) + 3H2 (g) Ä  2NH3(g)

33

Equilibrium Constants for a Series of Reactions

• When two chemical reactions are added (summed), the 
equilibrium constant for the new chemical reaction is the 
product of the equilibrium constants for the two original 
chemical reactions.

• Where K1 and K2 are equilibrium constants for the two 
chemical reactions being combined and K3 is the 
equilibrium constant for the new combined chemical 
reaction.

K3  K1  K2

34

Example Problem 12.5

• Given the following equilibria:

Determine the equilibrium expression for the sum of the two 
reactions.



CO2 (g) Ä  CO(g) 
1

2
O2 (g)

H2 (g) 
1

2
O2 (g) Ä  H2O(g)

35

Units and the Equilibrium Constant

• The equilibrium constant K is dimensionless.

• The concentrations used to calculate the equilibrium 
constant are divided by the standard concentration of 1 M, 
which has no numerical consequence.

• A dimensionless K is required when K is used as the 
argument in a natural log function. 
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Equilibrium Concentrations

• The equilibrium concentrations of reactants and products for a 
chemical reaction can be predicted using the balanced 
chemical equation and known equilibrium constants.

• There are three basic features for the strategy used in any 
equilibrium calculation.

• Write a balanced chemical equation for the relevant 
equilibrium or equilibria.

• Write the corresponding equilibrium expression or 
expressions.

• Create a table of concentrations for all reacting 
species.
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Equilibrium Concentrations

• Equilibrium concentrations can be determined from initial 
concentrations by realizing:

• The first row contains the initial concentrations.

• The second row contains the changes in the initial 
concentrations as the system come to equilibrium.

• The third row contains the final equilibrium concentrations.

• Equilibrium concentrations can be determined from initial 
concentrations by realizing which direction the reaction will 
shift to achieve equilibrium, express the concentration change 
in terms of a single variable, and solve for the equilibrium 
concentrations using the equilibrium expression. 
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Example Problem 12.6

• Calculate the equilibrium concentrations of H2, I2 and 
HI, if the initial concentrations are 0.050 M each for 
H2 and I2 and K = 59.3 at 400oC.

H2(g) + I2 (g) Ä  2 HI(g)

39

Equilibrium Concentrations from Initial Concentrations

• The concentration of HI = 0 initially, so the reaction will shift 
to the right to achieve equilibrium.

• For every x moles of H2 and I2 consumed, 2x moles of HI are 
produced.

40

Equilibrium Concentrations from Initial Concentrations

• The final concentrations are expressed in terms of the initial 
concentration minus x for the reactants and initial 
concentration plus 2x for the products.

• Substitute the algebraic final concentration terms into the 
equilibrium concentration and solve for x.
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Equilibrium Concentrations from Initial Concentrations

K=
[HI]2

[H2 ][I2 ]


(2x)2

(0.050  x)(0.050  x)
 59.3

(2x)2

(0.050  x)(0.050  x)
 59.3

2x

0.050  x
 7.70

0.39  9.70x

x  0.040

[H2 ]  [I2 ]  0.050  x

[H2 ]  [I2 ]  0.050  0.040  0.010 M

[HI]  2x  0.080 M
42

Example Problem 12.7

• The equilibrium constant for the reaction of chlorine gas with 
phosphorous trichloride to form phosphorus pentachloride is 
33 at 250°C. If an experiment is initiated with concentrations 
of 0.050 M PCl3 and 0.015 M Cl2, what are the equilibrium 
concentrations of all three gases?

Cl2 (g) + PCl3(g) Ä  PCl5(g)
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Mathematical Techniques for Equilibrium Calculations

• For complex equilibria that cannot be solved using the 
quadratic equation, software packages such as Maple®, and 
Mathematica® must be used.

• Equilibrium expressions help process engineers determine 
ways to manipulate equilibria to improve efficiency.
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Le Châtelier’s Principle

• Le Châtelier’s principle - When a system at equilibrium is 
stressed, it responds by reestablishing equilibrium to reduce 
the stress.

• There are three common means to introduce a stress to an 
equilibrium.

• Changes in concentration

• Changes in pressure

• Changes in temperature

45

Effect of a Change in Concentration

• For a reaction at equilibrium, a change in concentration for 
one or more of the reactants and/or products will disturb the 
equilibrium.

• The system will react to re-establish equilibrium.  

• For a reaction at equilibrium, increasing the concentration of 
one of the reactants will shift the equilibrium toward the 
products.

• The reactant concentration will decrease as reactant is 
converted to product, and the product concentration will 
increase until equilibrium is re-established.  

46

Q = 
[products]

[reactants]

Effect of a Change in Concentration

• The increase in product concentration for a reactant 
concentration increase can be rationalized by examining the 
reaction quotient.

• The reactant quotient, Q, is defined as the ratio of the 
product to the reactants.

• For a reaction at equilibrium, K = Q.

47

Q = 
[products]

[reactants]

Effect of a Change in Concentration

• For a reactant concentration increase, the value of Q
becomes small compared to K.

• To re-establish equilibrium, Q must equal K.

• The value of Q will approach K as the reactant 
concentration decreases and as the product concentration 
increases.

48

Effect of a Change in Concentration

• Placed in an empty flask, NO2 achieves equilibrium by 
reacting to form N2O4.

• Once at equilibrium, additional NO2 is added.  The 
system responds to this stress by shifting the equilibrium 
toward N2O4.



14.01.2014

9

49

Effect of a Change in Concentration

50

Example Problem 12.8

• Predict the change in the reaction quotient, Q, when:

• sodium acetate is added

• additional acetic acid is added

• sodium hydroxide is added

• Then, explain how the equilibrium shifts in response to each 
stress.

CH3COOH(aq) Ä  H (aq) CH3COO– (aq) 
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Effect of a Change in Pressure

• For reactions involving gases, if the number of moles of 
gas differs between reactants and products, a shift in 
pressure (due to a volume change) will result in a change 
in equilibrium position.

• For an increase in pressure, the equilibrium will shift 
toward the side of the equation with fewer moles of 
gas.

• For a decrease in pressure, the equilibrium will shift 
toward the side of the equation with more moles of 
gas. 
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Effect of a Change in Pressure

• For the equilibrium between NO2 and N2O4, the increase in pressure is 
offset by reducing the moles of gas present by forming N2O4.

• Decreasing the volume to 2 L initially increases the pressure to 5.0 atm.

• Equilibrium is re-established when the pressure is reduced to 4.6 
atm by reacting 2 NO2 to form N2O4.

53

Example Problem 12.9

• Predict the direction in which the reaction will go to respond to 
the indicated stress.

NH3(g) + CH4 (g) Ä  HCN(g)  3H2 (g); pressure is increased

2NH3(g) + 2CH4 (g) 3O2 (g) Ä  2HCN(g)  6H2O(g); pressure is decreased

54

Effect of a Change in Temperature on Equilibrium

• During a temperature change, heat flows in or out of the 
reacting system.

• Heat is treated as a product for an exothermic reaction.

• Heat is treated as a reactant for an endothermic reaction.

• Increase the temperature, equilibrium shifts away from the 
side with the heat.

• Decrease the temperature, equilibrium shifts toward the side 
with the heat.

reactants Ä products  heat

reactants  heat Ä products
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Effect of a Change in Temperature on Equilibrium

• Temperature effect on 
the equilibrium between 
NO2 and N2O4, an 
exothermic reaction.

• As temperature 
increases, the 
amount of NO2

increases, as 
indicated by the 
deepening color of 
the NO2 gas in the 
50oC water bath 
(right) compared to 
the ice bath (left).
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Effect of a Change in Temperature on Equilibrium

• Summary of the effects a temperature change will have on 
exothermic and endothermic reactions at equilibrium.
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Effect of a Catalyst on Equilibrium

• When a catalyst is added to a system at equilibrium, there is 
no impact on the equilibrium position.

• Catalysts speed up the rate of the forward and reverse 
reactions to the same extent.

• The equilibrium concentrations of products and reactants 
do not change. 

58

Free Energy and Chemical Equilibrium

• Equilibrium is a state of minimum free energy.

• G = 0 at equilibrium.

• A chemical system tends to move spontaneously toward 
equilibrium.

• When equilibrium is reached, the change in free energy is 
zero.

59

Graphical Perspective

• Chemical reactions always proceed toward a minimum in free 
energy.

60

Free Energy and Nonstandard Conditions

• For reactions with negative free energy changes, the 
equilibrium is product-favored, or the value of K is greater 
than 1.

• For reactions with positive free energy changes, the 
equilibrium is reactant-favored, or the value of K is less than 
1.

• The value of the equilibrium constant can be calculated from 
the Gibbs free energy change, or vice versa.

Go  RT lnK
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Example Problem 12.15

• Using tabulated thermodynamic data, calculate the 
equilibrium constant for the following reaction at 25˚C:


CH4 (g) 

1

2
O2 (g) Ä CH3OH(l ) 
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Borates and Boric Acid

• Borax is used as a cross-linker during polymer synthesis.

• Boric acid, B(OH)3, is produced from the reaction between 
borax, Na2B4O710H2O, and sulfuric acid.

• Borates are used in a number of industrial applications.

• They are used to manufacture fiberglass, which is used in 
both insulation and textiles.

• Borates are used to control the temperature at which 
glass melts, allowing melted glass to be pulled into 
fibers.

63

Borates and Boric Acid

• Borosilicate glasses are important in the lab and kitchen 
because of their resistance to heat-induced deformation.

• The heat resistance of borosilicate glass is applied to the 
production of halogen headlights and the cathode ray 
tubes found in traditional television sets and computer 
monitors.

• As polymer additives, borates impart fire resistance.

• Zinc borates have the important property of retaining their 
waters of hydration at high temperatures, which retards 
fires.

• Fires involving plastics containing zinc borate spread more 
slowly and produce less smoke.


