

Chapter Objectives

- Describe the structures of graphite and diamond and explain how their properties arise from their structures.
- Describe the arrangement of atoms in the common cubic crystal lattices and calculate the packing efficiency for a lattice.
- Use band theory to describe bonding in solids.
- Draw band diagrams for metals, insulators, and semiconductors (including n- and p-type materials).

Chapter Objectives

- Identify a material as a metal, insulator, or semiconductor from its band diagram.
- Explain how the electrical properties of metals, insulators, and semiconductors are related to their chemical bonding.
- Identify the types of intermolecular forces likely to be most important for a particular substance.
- Explain the connection between intermolecular forces and properties such as boiling point and vapor pressure.

Chapter Objectives

- Describe the growth of polymers through addition and condensation reactions and predict which of these processes is likely to be important for a given monomer.
- Describe the connection between polymer properties and molecular structure.

Carbon

- There are three forms of the element carbon.
 - · Graphite, diamond, and fullerenes.
 - Graphite and diamond have been known for a long time.
 - Fullerenes were discovered in 1985 in the form of C₆₀.
 - C₆₀ was named buckminsterfullerene due to its resemblance to geodesic domes popularized by the architect Buckminster.

Carbon

- Carbon has long been used as material in important applications.
 - · Diamond is used in drill bits and jewelry.
 - Graphite is used in pencils, as a lubricant, and as a composite material.
 - Applications for fullerenes and nanotubes are still being explored.

Condensed Phases - Solids

- Atoms or molecules arrange themselves into two types of solids.
 - Crystalline solids: atoms or molecules assume a regular, repeating geometric arrangement.
 - Amorphous solids: atoms or molecules assume a random arrangement.

Condensed Phases - Solids

- Packing efficiency in crystalline solids is the percentage of space occupied by a given arrangement.
 - The less empty space in the packing of atoms or molecules in a solid, the higher the packing efficiency.
 - The higher the packing efficiency, the higher the density of a solid.

Condensed Phases - Solids

- A unit cell is the smallest collection of atoms that displays all the features of the crystal structure.
 - Three types of cubic unit cells simple cubic (sc) containing 1/8 each of 8 corner atoms, body-centered cubic (bcc) containing one additional atom within, and face-centered cubic (fcc) with an additional 1/2 each of 6 atoms atoms the face.

total volume occupied by atoms = # atoms in unit cell × $\left(\frac{4}{3}\pi r^3\right)$

Calculation of Packing Efficiency

- To find the volume of the unit cell in terms of radius:
 - $V = a^3$ (where *a* is the edge length of the unit cell)

$$a_{\rm fcc} = (2\sqrt{2})r; \quad a_{\rm bcc} = \frac{4}{\sqrt{3}}r; \quad a_{\rm sc} = 2r$$

To calculate packing efficiency:

Packing efficiency =
$$\frac{\text{volume of atoms in unit cell}}{\text{total volume of atoms in unit cell}} \times 100$$

xample Problem 8.1

 Show that the packing efficiency of the face-centered cubic structure is 74%.

Condensed Phases - Solids

- Coordination number is the number of atoms immediately adjacent to any given atom.
 - · Simple cubic has a coordination number of 6.
 - · Body-centered cubic has a coordination number of 8.
 - Close-packed structures have a coordination number of 12.

Condensed Phases - Solids

- As coordination numbers increase, each atom in the lattice interacts with more neighbor atoms.
 - The attractive forces for these interactions hold the crystal together.
 - Close-packed structure, with a coordination number of 12, is one of the most common crystal structures.

Condensed Phases - Solids																							
	1 H	1															17 H	18 He	1				
	Li	2 Bc	1										13 B	14 C	15 N	16 0	F	Ne					
	Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	s	Cl	Ar					
	ĸ	Ca	Sc	Ti	v	Cr	Ma	Fe	Co	Ni	Cu	Za	Ga	Gc	As	Se	Br	Kr					
	Rb	Sr	Y	Zt	Nb	Mo	Tc	Ra	Rh	Pd	Ag	CI	In	Sn	Sb	Te	1	Xe					
	Cs	Ba	La	Hf	Ta	w	Re	Os	ŀ	Pe	Au	Hg	TI	Pb	Bi	Po	At	Rn					
	Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt														
			C	2 1	Pr N	a P	m Se	m E	a (a 1	гъ т	Dy I	lo I	ir T	m ¥	ъ	.u						
			Т	hI	Pa 1	U N	Ip P	u A	m C	m E	3k (lf I	s F	n M	id N	io I	2						
Simple cubic (s.c.) Body-scattered cubic (b.c.e.) Face-centred cubic (c.e.) Cerboshermbic (ortico)											Hexagonal dose-packed (h.c.,s.) Recondenderia (hornab) Terropout (terrag) Moreclinic (nore)												
Preferre	d ci	ryst	tal	latt	ice	for	th	e s	olic	d p	has	se o	of e	ac	h e	len	ner	nt.					
Ther likely	e is / fo	s no r a	o d ny	isc pai	ern rtic	i-at ulai	ole r m	pat eta	ter I.	n a	as t	0 W	/hic	ch d	cry	sta	l st	ruc	tur	e is	s m	ost	19

Condensed Phases - Solids

- The properties of a solid are related to its crystal structure.
 - Each carbon atom in diamond is covalently bonded to four neighboring atoms.
 - · Diamond is an inordinately hard material.
 - The carbon atoms in graphite are covalently bonded into flat sheets.
 - Graphite sheets can slide past each other.

Bonding in Solids: Metals, Insulators, and Semiconductors

- · Properties of metals can be explained by bonding in metals.
- Metals are:
 - Malleable worked into useful shapes or foils.
 - · Ductile pulled into wires
 - · Good conductors of heat and electricity.

Models of Metallic Bonding

- The bonding in metals cannot be explained in terms of ionic or covalent bonding.
 - There is little electronegativity difference from element to element so metals and alloys do not form ionic bonds.
 - The outermost subshells are not filled, so a large number of covalent bonds would be needed to satisfy the octet rule.

23

Models of Metallic Bonding

- The sea of electrons model is the first and simplest qualitative explanation of metallic bonding.
 - The valence electrons are delocalized and move freely throughout the solid.
 - Explains malleability, ductility, and conductivity properties of metals.

26

Models of Metallic Bonding

- · Band theory is a quantitative model of bonding in solids.
 - The wave functions of the valence electrons interact with each other.
 - Bonding molecular orbitals result from constructive interference.
 - Antibonding molecular orbitals result from destructive interference.

Models of Metallic Bonding

- The number of molecular orbitals formed equals the number of atomic orbitals involved.
 - For every bonding molecular orbital formed, one antibonding molecular orbital is also formed.
 - For odd number of bonding atoms, a nonbonding molecular orbital is formed.
 - The molecular orbitals formed belong to the entire set of atoms

27

Models of Metallic Bonding

- Energies of the molecular orbitals are related to the energy of the original atomic orbitals.
 - Bonding molecular orbitals are lower energy.
 - Antibonding molecular orbitals are higher energy.

Band Theory and Conductivity

- · Electrons fill the lowest energy band first.
- The energy difference between the filled and empty bands determines the electrical properties of the bulk material.
- The band populated by valence electrons is the valence band.
- The empty band above the valence band is the conduction band.
- The energy difference between the valence and conduction band is the band gap.

Band Theory and Conductivity

- Current flows when electrons move from the valence band to the conduction band.
- Conductors have small band gaps. A very small amount of energy is required to move electrons to the conduction band.
- Insulators have large band gaps. A large amount of energy is required to move electrons to the conduction band.
- Semiconductors have band gap intermediate of conductors and insulators.

Semiconductors

- Electrical conductivity of semiconductors can be modified via doping.
 - Doping adding trace amounts of an element to a substance to modify its properties.
 - n-type: prepared by doping with a valence electron rich element; "negative"
 - p-type: prepared by doping with a valence electron deficient element; "positive"

Semiconductors

n-type semiconductors

- The extra valence electron fills the donor level, which is just below the conduction band.
- Little energy is required to promote the donor level electron to the conduction band.

p-type semiconductors

Semiconductors

33

- The lack of valence electrons creates an acceptor level, just above the valence band.
- Little energy is required to promote a valence band electron to the acceptor level.
- The vacancies in the valence band are referred to as holes.

34

Intermolecular Forces

- Intermolecular forces the attractive and repulsive forces between molecules.
 - The attractive and repulsive intermolecular forces are weak in comparison to bonding forces.
 - Intermolecular forces are largely responsible for determining the structure and properties of condensed phases.
 - The principle of minimization of energy applies here as well.

Dispersion Forces

- Dispersion forces are common to all molecules.
 - Also called London forces.
 - Also referred to as instantaneous dipole-induced dipole forces.
 - Dipoles exist for two oppositely charged points separated by some distance.

Dispersion Forces

- An instantaneous dipole occurs when a fluctuation in electron density for an atom or molecule produces a dipole.
 - Instantaneous dipoles are short-lived and constantly forming and disappearing.
- An induced dipole is created when an external electric field forces a dipole to exist.
 - A permanent dipole or an instantaneous dipole is the source of the external electric field.

Dispersion Forces

· Individual dispersion forces are very weak.

- The sum of dispersion forces over an Avogadro's number of atoms results in a significant amount of energy.
- Dispersion forces hold many liquids and solids together.
- The strength of a dispersion force can be estimated from the polarizability of a molecule.
 - Polarizability is a measure of how susceptible a molecule's electron density is to perturbation by external electric fields.
 - Large molecules are more polarizable than smaller molecules and experience stronger dispersion forces.

Dipole-Dipole Forces

- Dipole-dipole forces are the attractive and repulsive forces for molecules with a permanent dipole.
- The charge at the poles of a dipole is seldom more than a fraction of the charge on an electron, making these forces weaker than a chemical bond.
- Molecules with larger dipoles have stronger dipole-dipole forces.
- Dipole-dipole forces are typically stronger than dispersion forces.

45

Dipole-Dipole Forces Dipole-dipole forces for 50 polar molecules. At any given time

Hydrogen Bonding

- Hydrogen bonds are a special case of dipole-dipole forces.
 - Hydrogen bonds are especially strong compared to dipoledipole forces.
 - Hydrogen bonds occur only in compounds containing hydrogen covalently bonded to the highly electronegative elements F, O, or N.
 - The strong dipole created in these types of covalent bonds creates a strong dipole-dipole interaction with similar bonds.

Intermolecular Forces

- Intermolecular forces are weak compared to the average covalent bond.
- The large number of intermolecular forces make intermolecular forces a key factor in determining the bulk properties of materials.

51

53

Condensed Phases - Liquids

- · Liquids are also a condensed phase.
 - Particles in condensed phases are in constant contact.
 - · Every particle in a solid vibrates around a fixed position.
 - Every particle in a liquid is free to constantly move with respect to other particles.

Vapor Pressure

- Vapor pressure the gas phase pressure of a substance in dynamic equilibrium with the pure liquid in a pure substance.
 - Vapor pressure is a characteristic property of a particular substance at a particular temperature.

Vapor Pressure

- There is a distribution of kinetic energies for liquids at a given temperature.
 - Liquid molecules at the surface of the liquid with sufficient kinetic energy will pass into the gas phase.
 - Vapor pressure increases with temperature.
 - Liquids with strong intermolecular forces have lower vapor pressures.
 - Liquids with high vapor pressures are described as volatile.

Vapor Pressure

- To measure the vapor pressure of a solid or a liquid, the system must reach equilibrium.
 - The equilibrium is a dynamic equilibrium.
 - The rate of evaporation equals the rate of condensation.
 - The amount of gas and liquid does not appear to change.

Boiling Point

- Normal boiling point temperature where the vapor pressure of a liquid equals atmospheric pressure.
- The stronger the intermolecular forces in a liquid, the lower the vapor pressure, thus, the higher the boiling temperature.

Boiling Point Table 🛿 8.1 Vipor pressures at 295 K and normal boiling points of a writery of substances Substance Vapor Pres (corr) formal Boiling Point (°C) 202 Aceton 562 Вс, 185 58.8 CCIF₃ 24,940 -81.1 CCI₂F₂ -448 -29.8 OCI,F 717 23.8 7634 CCI 99.0 HCN 657 26 Formald 21 3525 Methanol 103 64.96 e-Pente 455 36.07 Neopentar 1163 9.5 Isobutan 2393 n-Butane 1658 -05 Propant Ethanc 29,380 -88.63 Water 19.8 100

Vapor pressures at 295 K for various substances.

- Substances with weaker attractive forces have higher vapor pressures and lower normal boiling points.
- At lower atmospheric pressure, such as in mountainous regions, observed boiling points are lower.

Surface Tension

- Liquid molecules at the surface of a liquid experience fewer attractive forces than the molecules in the bulk material.
 - Surface tension is a liquid's response to the imbalance in attractive forces and the tendency to minimize energy.
 - · Liquids form spherical shapes.
 - Spherical shapes have the greatest volumes with the least amount of surface area.
 - Stronger attractive forces result in greater surface tension.

57

50

Surface Tension

- The interaction between a liquid and the surface of a solid depends on two types of attractive forces.
 - Cohesion forces are liquid-liquid interactions.
 - Adhesion forces are liquid-solid interactions.
 - The relative strengths of the two forces dictate the shape of a liquid's meniscus.
 - Strong adhesion forces and weaker cohesion forces result in a concave meniscus.
 - Weak adhesion forces and stronger cohesion forces result in a convex meniscus.

Surface Tension

- The concave meniscus for water results from stronger adhesive forces.
- The convex meniscus for mercury (shown in the figure) results from stronger cohesive forces.

60

Polymers

- Polymers are giant molecules constructed by sequentially stringing together smaller molecules called monomers.
 - Physical properties of polymers can be adjusted by modifying the monomers used, reaction types, and catalysts used to prepare the polymer.
- Monomers containing one or more double bonds undergo free radical addition reactions to form addition polymers.
 - Addition polymerization occurs through initiation, propagation, and termination steps.

Addition Polymers

- Initiation: a free radical (species with an unpaired electron) is produced.
- Propagation: the free radical attacks the double bond of the monomer to break the double bond, leaving a single bond; a new free radical containing the monomer results.
 - The free radical propagates itself by reacting with more monomers.
- Termination: a free radical reacts with another free radical.
 - Also called chain termination.
 - Termination is a random event, not all polymer chains will have the same length.

Addition Polymers

- The distribution of polymer lengths and molar masses are described in terms of degree of polymerization.
 - Average number of repeating units in the polymer.

Degree of polymerization =

molar mass of polymer molar mass of monomer

Addition Polymers

- Polymer properties can be tailored.
 - Choose appropriate monomer.
 - Modify degree of polymerization.
 - Control the linking of monomers.

Addition Polymers

- The choice of propylene gives rise to different types of polypropylene.
 - Polypropylene resembles ethylene, but one H has been replaced with a methyl (-CH₃) group.
 - The methyl group attaches to the carbon backbone in three different ways.

Addition Polymers

- Isotactic all methyl groups are arranged on the same side of the polymer chain.
- Syndiotactic methyl groups alternate systematically from one side of the polymer chain to the other.
- Atactic methyl groups are arranged randomly along the polymer chain.
- Arrangement of methyl groups impacts the properties of the polymer.

Addition Polymers Monomers can link together in different ways. I lotactic Syndotactic Atactic I lotactic and syndiotactic polymers generally lead to more predictable and controllable properties.

Example Problem 8.4

67

• Each of the following monomers or pairs of monomers can undergo condensation polymerization reactions. Draw the structures showing the repeat units and linkages in each of the resulting polymers.

Copolymers

- Copolymers are made up of more than one type of monomer. • Nylon and Dacron are examples.
 - The order in which the monomers are arranged impacts the properties of a polymer.
- Alternating copolymers monomers arranged in a regular, alternating series.
- Block copolymer regions where a single monomer is repeated, interspersed with other regions where a different monomer is repeated.
- Random copolymers monomers are arranged randomly
 Graft copolymer monomers of different polymers are branched from a backbone of a different polymer.

Polymers and Additives

- · Additives are added to polymers to modify polymer properties.
 - Pigment to impart color.
 - · Plasticizers to increase flexibility.
 - Antistatic agents, fillers, fire retardants, and light and heat stabilizers.

The Invention of New Materials

- New materials are created through a systematic approach and good fortune.
 - Fullerenes were discovered as an unusual result from an experiment with small atom clusters.
 - High temperature superconductivity was discovered using the heat-and-beat method of synthesis.

75

 Conducting polymers can be designed with a polymer backbone of alternating single and double bonds.

