Postulates of Kinetic Molecular Theory

1. A gas is made up of vast number of particles, and these particles are in constant random motion

Postulates of Kinetic Molecular Theory

2. Particles in a gas are infinitely small, they occupy no volume

Volumeless - Most of the volume occupied by a gas is empty space

- Accounts for lower density compared to solid and liquids.
- Accounts for compressibility of gases.

Image source: http:/len.wikipedia.orggikiki/Kinetic_theory

Postulates of Kinetic Molecular Theory
4. Particles in a gas interact with each other only when collisions occur.

- Assumes no force of attraction/repulsin between gas particles

$$
K E_{a v} \propto T
$$

Deviations from Ideality - "Real" Gases

(a) At high pressure

(b) At low temperature

At high pressure

At low temperature

Image source: http://wps.prenhall.com/wps/media/objects/3311/3391331/blb1009.htm/

van der Waals Equation

b) Let's now repeat this calculation, assuming that the gas is compressed so that it fills a container that has a volume of only 0.200 liters.

According to the ideal gas equation, the pressure

$$
P=\frac{n R T}{V}=\frac{(1.00 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(273 \mathrm{~K})}{0.200 \mathrm{~L}}=112 \mathrm{~atm}
$$

The van der Waals equation, however, predicts that the pressure

$$
\left[P+\frac{\left(3.592 \frac{L^{2} \mathrm{~atm}}{\mathrm{~mol}^{2}}\right)(1.00 \mathrm{~mol})^{2}}{(0.200 \mathrm{~L})^{2}}\right]\left[0.200 \mathrm{~L}-(1.00 \mathrm{~mol})\left(0.04267 \frac{\mathrm{~L}}{\mathrm{~mol}}\right)\right]
$$

$$
=(1.00 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{molK}}\right)(273 \mathrm{~K})=52.6 \mathrm{~atm}
$$

Percentage correction: $\frac{112-526}{112} \times 100 \%=53 \%$

A conceptual question

- van der Waals equation provides a much better fit with the behavior of a "real" gas than the "ideal" gas equation, but with a cost! What do you think the cost is?

Answ. : Loss in generality!

