

Chapter Objectives

- Describe the physical properties of gases.
- Identify several gaseous compounds or classes of compounds that are important in urban air pollution
- Use the ideal gas law for calculating changes in the conditions of gases.
- Use the concept of partial pressure to work with mixtures of gases.

Warning!!

- These slides contains visual aids for learning BUT they are NOT the actual lecture notes!
- Failure to attend to lectures most probably result in failing the lecture!
- So I strongly recommend that you attend to the classes. Take a pen, a notebook and WRITE!

Chapter Objectives

- Perform stoichiometric calculations for reactions involving gases as reactants or products
- State the postulates of the kinetic theory of gases.
- Describe qualitatively how the postulates of the kinetic theory account for the observed behavior of gases.
- Describe the Maxwell-Boltzmann distribution of speeds and the effects of temperature and molar mass on molecular speed.

Chapter Objectives

- Identify conditions under which gases might not behave ideally.
- Use the van der Waals equation to perform calculations for gases under nonideal conditions.
- Describe the principles of operation for some pressuremeasuring devices.

- Clean air is a mixture of several gases.
Table | 5.1
The cmomposition of a one cultic meter sample of dry
air at $25^{\circ} \mathrm{C}$ and normal aunospheric pressure
- Nitrogen and oxygen are major components
- Water vapor (humidity) varies with place, time, and temperature.
- Dry air is a convenient reference point

Air Pollution

Air Pollution

- Six Principal Criteria Pollutants
- $\mathrm{CO}, \mathrm{NO}_{2}, \mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{~Pb}$, and Particulate Matter (PM)
- Commonly found throughout the country; cause a variety of negative effects on health, environment, and/or property.
- EPA established criteria for acceptable levels:
- Primary standards intended to protect health.
- Nonattainment area: region that exceeds primary standards
- Secondary standards intended to protect environment and property.
- Allowable levels usually less than one part per million (ppm)

Air Pollution

- The criteria pollutant nitrogen dioxide, NO_{2}, is emitted by automobiles.
- High temperatures inside car engines cause oxygen and nitrogen to react to produce a variety of nitrogen oxides, designated with the generic formula NO_{x}.
- Brown color of smog due to NO_{2}; attacks lung membranes

Air Pollution

- Photochemical reactions, reactions initiated by light energy, can trigger formation of ozone, another criteria pollutant, at ground level from:
- nitrogen oxides
- volatile organic compounds (VOCs): hydrocarbons that readily evaporate
- Reactions between these two types of compounds produce a mixture a gases collectively referred to as smog.
- Many components are lung irritants.
- Ozone is the most significant lung irritant.

Properties of Gases

Properties of Gases

- The ideal gas law is the quantitative relationship between pressure (P), volume (V), moles gas present (n), and the absolute temperature (T)
- R is the universal gas constant.
- $R=0.08206 \mathrm{~L} \mathrm{~atm}_{\mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}$: used in most gas equations
- $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$: used in equations involving energy

$$
P V=n R T
$$

Pressure

Measuring Pressure

History and Application of the Gas Law

- Gases change significantly when the conditions in which they are found are altered.
- These changes are determined empirically using gas laws.
- Charles's Law: relationship between T and V
- Boyle's Law: relationship between P and V
- Avogadro's Law: relationship between n and V
- The empirical gas laws led to the ideal gas law

Charles's Law

A barometer is used to measure atmospheric pressure.

- The height of the mercury column is proportional to atmospheric pressure.

- Units of Pressure
- 1 torr $=1 \mathrm{~mm} \mathrm{Hg}$
- $1 \mathrm{~atm}=760$ torr (exactly)
- $1 \mathrm{~atm}=101,325 \mathrm{~Pa}$ (exactly)
- 760 torr $=101,325 \mathrm{~Pa}$ (exactly)
- Jacques Charles studied relationship between volume and temperature.
- Plots of V versus T for different gas samples converged to the same temperature at zero volume.
- Basis of the Kelvin temperature scale.

Charles's Law

- For fixed pressure and fixed number of moles of gas, the volume and the absolute temperature of a gas are directly proportional.

$$
V \propto T
$$

- All of the fixed variables can be factored out of the ideal gas law as a new constant that can be used to relate two sets of conditions:

$$
\frac{V_{1}}{T_{1}}=\frac{n R}{P}=\text { constant }=\frac{V_{2}}{T_{2}}
$$

Boyle's Law

- Pressure and volume are inversely proportional.

$$
V \propto \frac{1}{P}
$$

- All of the fixed variables can be factored out as a new constant that can be used to relate two sets of conditions:

$$
P_{1} V_{1}=n R T=\text { constant }=P_{2} V_{2}
$$

Example Problem 5.1

- A common laboratory cylinder of methane has a volume of 49.0 L and is filled to a pressure of 154 atm . Suppose that all of the CH_{4} from this cylinder is released and expands until its pressure falls to 1.00 atm . What volume would the CH_{4} occupy?

Avogadro's Law

- Avogadro's Law states that for fixed pressure and temperature, the volume and moles of a gas are directly proportional.

$$
\begin{gathered}
V \propto n \\
\frac{V_{1}}{n_{1}}=\frac{R T}{P}=\text { constant }=\frac{V_{2}}{n_{2}}
\end{gathered}
$$

Example Problem 5.2

- A balloon is filled with helium and its volume is 2.2 L at 298 K . The balloon is then dunked into a thermos bottle containing liquid nitrogen. When the helium in the balloon has cooled to the temperature of the liquid nitrogen (77 K), what will the volume of the balloon be?

Units and the Ideal Gas Law

- Temperature must be expressed in Kelvin for all gas calculations!
- Negative temperatures would result in negative pressures, volumes, and moles.
- In some engineering fields, the Rankine temperature scale is used, which is another absolute temperature scale.
- $0^{\circ} \mathrm{R}=0 \mathrm{~K} ; 1^{\circ} \mathrm{R}=1.8 \mathrm{~K}$
- The unit for moles is always mol.
- The units for measuring pressure and volume can vary. In gas calculations, these units must agree with those of the gas constant
- $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
- $\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
- $\mathrm{R}=62.37 \mathrm{~L}$ torr $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$

Example Problem 5.3

- A sample of CO_{2} gas has a volume of $575 \mathrm{~cm}^{3}$ at 752 torr and $72^{\circ} \mathrm{F}$. What is the mass of carbon dioxide in this sample?

Partial Pressure

Partial Pressure

- Dalton's law of partial pressures: The total pressure (P) of a mixture of gases is the sum of the partial pressures of the component gases (P_{i}).

$$
P=\sum_{i} P_{i}
$$

- Daltons Law can be expressed in terms of mole fraction.
- Mole fraction $\left(X_{i}\right)$ for a gas in a gas mixture is the moles of the gas $\left(n_{\mathrm{i}}\right)$ divided by the total moles gas present.
- The partial pressure of each gas is related to its mole fraction.

$$
X_{i}=\frac{n_{i}}{n_{\text {total }}} \quad \Rightarrow \quad P_{i}=X_{i} P
$$

Example Problem 5.4

Example Problem 5.5

- A mixture has the mole fractions given in the following table:

Gas	N_{2}	O_{2}	$\mathrm{H}_{2} \mathrm{O}$	SO_{2}
Mole Fraction	0.751	0.149	0.080	0.020

- If the desired pressure is 750 . torr, what should the partial pressures be for each gas?
- If the gas is to be in a 15.0 L vessel held at $30^{\circ} \mathrm{C}$, how many moles of each substance are needed?

Stoichiometry of Reactions Involving Gases

- For reactions involving gases, the ideal gas law is used to determine moles of gas involved in the reaction.
- Use mole ratios (stoichiometry)
- Connect number of moles of a gas to its temperature, pressure, or volume with ideal gas law

$$
P V=n R T
$$

Example Problem 5.6

- When an experiment required a source of carbon dioxide, a student combined 1.4 g of sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ with excess hydrochloric acid (HCl). If the CO_{2} produced is collected at 722 torr and $17^{\circ} \mathrm{C}$, what volume will the gas occupy?

STP Conditions

- Standard temperature and pressure, STP, for a gas is $0^{\circ} \mathrm{C}$ (273.15 K) and 1 atm.
- For one mole of gas at STP, the standard molar volume is 22.41 L (calculated using ideal gas law)
- This number provides a conversion factor for stoichiometric problems that include gases, provided the STP conditions are maintained.

Kinetic-Molecular Theory and Ideal versus Real Gases

- In many important practical settings, gases do not always behave ideally, especially at very high pressure and/or very low temperature.
- Nonideal gas behavior can be explained using Kinetic Molecular Theory.
- Provides connections between observed macroscopic properties of gases, the gas law equation, and the behavior of gas molecules on a microscopic scale.

Example Problem 5.7

- Carbon dioxide can be removed from a stream of gas by reacting it with calcium oxide to form calcium carbonate. If we react 5.50 L of CO_{2} at STP with excess CaO , what mass of calcium carbonate will form?

Postulates of the Model

- Gases are made up of large collections of particles, which are in constant, random motion.
- Gas particles are infinitely small and occupy negligible volume.
- Gas particles move in straight lines except when they collide with other particles or with the container walls. These collisions are elastic, so kinetic energy of particles is conserved.
- Particles interact with each other only when collisions occur.
\qquad

Postulates of the Model

Postulates of the Model

- At a given temperature, gas molecules in a sample can be characterized by an average speed.
- Some gas molecules move faster than average, some move slower than average.
- The distribution function that describes the speeds of a collection of gas particles is known as the MaxwellBoltzmann distribution of speeds.

Postulates of the Model

- The equation for the Maxwell-Boltzmann distribution describes $N(v)$, which is the number of molecules moving with speeds close to v.

$$
\frac{N(v)}{N_{\text {total }}}=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T}
$$

- Most gas molecules move at the most probable speed, which is the peak of the curve in the Maxwell-Boltzmann plot.

$$
v_{\mathrm{mp}}=\sqrt{\frac{2 R T}{M}}
$$

Real Gases and Limitations of the Kinetic Theory

- Kinetic molecular theory implies that the volume of a gas molecule is insignificant compared to the "empty space" volume for a gas sample.
- Mean free path used to test validity of assumption.
- Average distance a particle travels between collisions with other particles.
- The mean free path for air at room temperature and atmospheric pressure is 70 nm .
- This value is 200 times larger than the typical radius of a small molecule like N_{2} or O_{2}.
- Volume of empty space in a gas is 1 million times that of gas particle volume.

Postulates of the Model

- For a fixed temperature, as the molecular weight increases, the average speed for the gas molecules decreases.

Postulates of the Model

- The Maxwell-Boltzmann distribution can be described in terms of the average speed or root-mean-square speed.
- Average speed, v_{avg}, is 1.128 times v_{mp}.
- The existence of the "tail" on the distribution curve at high speeds will pull the average to a speed higher than the most probable value.
- $v_{\mathrm{rms}}=1.085$ times v_{avg}.
- The root-mean-square speed is useful because the average kinetic energy is given by

$$
\mathrm{KE}_{\mathrm{avg}}=\frac{1}{2} m v_{\mathrm{ms}}^{2}
$$

Real Gases and Limitations of the Kinetic Theory

- The volume of a gas particle is significant compared to the "empty space" volume under high pressure conditions.
- Mean free path decreases as pressure increases.
- Gas molecules are very close together.
- Therefore, volume of the gas particles becomes significant.

Real Gases and Limitations of the Kinetic Theory

- Kinetic molecular theory asserts that gas molecules move in straight lines and interact only through perfectly elastic collisions.
- Gas molecules neither attract nor repel.
- Strength of attractive forces small compared to kinetic energy of gas molecules.
- Attractive and repulsive forces are significant under conditions of low temperature
- Kinetic energy decreases with temperature
- Gas molecules experience "sticky" collisions.
- Collision rate decreases, decreasing the pressure.

Real Gases and Limitations of the Kinetic Theory

(b) Low temperature

- The ideal gas model breaks down at high pressures and low temperatures.
- high pressure: volume of particles no longer negligible - low temperature: particles move slowly enough to interact

Correcting the Ideal Gas Equation

Correcting the Ideal Gas Equation

- van der Waals equation is commonly used to describe the behavior of real gases

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

- a corrects for attractive forces.
- Molecules with stronger attractive forces have larger a values.
- b corrects for the volume occupied by gas molecules.
- Large molecules have larger b values.

| Table \|| 5.2 | | | The van der Waals constants a and b are compound specific. |
| :---: | :---: | :---: | :---: |
| Vin der Waals constants for several common gises | | | |
| Cas | $\left(\mathrm{atm} \mathrm{~L} L^{2} \mathrm{~mol}^{-2}\right)$ | $\left.\begin{array}{c} b \\ \left(\mathrm{Lmol}^{-1}\right. \end{array}\right)$ | |
| Ammonic, NH_{3} | 4.170 | 0.03707 | |
| Argon, Ar | 1.345 | 0.03219 | |
| Carbon tiuxide, CO_{2} | 3.592 | 0.04267 | - Both are zero in |
| Helium, He | 0.034 | 0.0237 | gases behavin |
| Hylrogen, H_{2} | 02414 | 0.02601 | lly. |
| Hydrogen flvaide, HF | 9.433 | 0.0739 | |
| Methane, CH_{4} | 2253 | 0.04278 | |
| Nitrogen, N_{2} | 1390 | 0.03913 | |
| Osygen, O_{2} | 1300 | 0.03183 | |
| Sulfur dioxide, SO_{2} | 6.714 | 0.05636 | |
| Water, $\mathrm{H}_{2} \mathrm{O}$ | 5.464 | 0.03049 | 46 |

Example Problem 5.8

- An empty 49.0 L methane storage tank has an empty mass of 55.85 kg and, when filled, has a mass of 62.07 kg . Calculate the pressure of CH_{4} in the tank at $21^{\circ} \mathrm{C}$ using both the ideal gas equation and the van der Waals equation.
- What is the percentage correction achieved by using the more realistic van der Waals equation?

Gas Sensors

- The concentration of air pollutants is monitored by the EPA.
- The concentration of a gas is proportional to the partial pressure of the gas.
- Gas pressure sensors are used to monitor changes in partial pressure or concentration of gases.

Gas Sensors

