
11.11.2013

1

www.cengage.com/chemistry/brown

Jacqueline Bennett • SUNY Oneonta

Larry Brown
Tom Holme

Chapter 5
Gases

2

Warning!!

• These slides contains visual aids for learning BUT they are 
NOT the actual lecture notes!

• Failure to attend to lectures most probably result in failing the 
lecture!

• So I strongly recommend that you attend to the classes. Take 
a pen, a notebook and WRITE!
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Chapter Objectives

• Describe the physical properties of gases.

• Identify several gaseous compounds or classes of 
compounds that are important in urban air pollution.

• Use the ideal gas law for calculating changes in the 
conditions of gases.

• Use the concept of partial pressure to work with mixtures of 
gases.
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Chapter Objectives

• Perform stoichiometric calculations for reactions involving 
gases as reactants or products.

• State the postulates of the kinetic theory of gases.

• Describe qualitatively how the postulates of the kinetic theory 
account for the observed behavior of gases.

• Describe the Maxwell-Boltzmann distribution of speeds and 
the effects of temperature and molar mass on molecular 
speed.
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Chapter Objectives

• Identify conditions under which gases might not behave 
ideally.

• Use the van der Waals equation to perform calculations for 
gases under nonideal conditions.

• Describe the principles of operation for some pressure-
measuring devices.
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Air Pollution

• Clean air is a mixture of 
several gases.

• Nitrogen and oxygen 
are major components

• Water vapor (humidity) 
varies with place, time, 
and temperature.

• Dry air is a convenient 
reference point
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Air Pollution

• Six Principal Criteria Pollutants

• CO, NO2, O3, SO2, Pb, and Particulate Matter (PM)

• Commonly found throughout the country; cause a variety of negative 
effects on health, environment, and/or property.

• EPA established criteria for acceptable levels:

• Primary standards intended to protect health.

• Nonattainment area: region that exceeds primary standards

• Secondary standards intended to protect environment and property.

• Allowable levels usually less than one part per million (ppm).
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Air Pollution

• The criteria pollutant nitrogen dioxide, NO2, is emitted by 
automobiles.

• High temperatures inside car engines cause oxygen 
and nitrogen to react to produce  a variety of nitrogen 
oxides, designated with the generic formula NOx.

• Brown color of smog due to NO2; attacks lung 
membranes
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Air Pollution

• Photochemical reactions, reactions initiated by light 
energy, can trigger formation of ozone, another criteria 
pollutant, at ground level from:

• nitrogen oxides

• volatile organic compounds (VOCs): hydrocarbons 
that readily evaporate

• Reactions between these two types of compounds produce a 
mixture a gases collectively referred to as smog.

• Many components are lung irritants.

• Ozone is the most significant lung irritant.
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Air Pollution

• Pollutant levels vary with time of day and location.
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Properties of Gases

• Expand to fill the volume of any container.

• Have much lower densities than solids or liquids.

• Have highly variable densities, depending on conditions.

• Mix with one another readily and thoroughly.

• Change volume dramatically with changing temperature.
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Properties of Gases

• The ideal gas law is the quantitative relationship between 
pressure (P), volume (V), moles gas present (n), and the 
absolute temperature (T).

• R is the universal gas constant.

• R = 0.08206 L atm mol-1 K-1: used in most gas equations

• R = 8.314 J mol-1 K-1 : used in equations involving energy

PV  nRT
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Pressure

• Pressure is force per unit area. 

• Atmospheric pressure is the force attributed to the weight 
of air molecules attracted to Earth by gravity. 

• As altitude increases, atmospheric pressure decreases.

P 
F

A
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Pressure

• Pressure results from 
molecular collisions 
between gas molecules 
and container walls.

• Each collision imparts 
a small amount of 
force.

• Summation of the 
forces of all molecular 
collisions produces the 
macroscopic property 
of pressure.
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Measuring Pressure

• A barometer is used to measure 
atmospheric pressure.

• The height of the mercury 
column is proportional to 
atmospheric pressure.

• Units of Pressure

• 1 torr = 1 mm Hg

• 1 atm = 760 torr (exactly)

• 1 atm = 101,325 Pa (exactly)

• 760 torr = 101,325 Pa (exactly)
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History and Application of the Gas Law

• Gases change significantly when the conditions in which they 
are found are altered.

• These changes are determined empirically using gas laws.

• Charles’s Law: relationship between T and V

• Boyle’s Law: relationship between P and V

• Avogadro’s Law: relationship between n and V

• The empirical gas laws led to the ideal gas law
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Charles’s Law

• Jacques Charles studied relationship between volume and 
temperature.

• Plots of V versus T for different gas samples converged to 
the same temperature at zero volume.

• Basis of the Kelvin temperature scale.
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Charles’s Law

• For fixed pressure and fixed number of moles of gas, the 
volume and the absolute temperature of a gas are directly 
proportional.

• All of the fixed variables can be factored out of the ideal gas 
law as a new constant that can be used to relate two sets of 
conditions:

V T

V1

T1


nR

P
 constant 

V2

T2
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Boyle’s Law

• Pressure and volume are inversely proportional.

• All of the fixed variables can be factored out as a new 
constant that can be used to relate two sets of conditions:

V 
1

P

P1V1  nRT  constant  P2V2
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Avogadro’s Law

• Avogadro’s Law states that for fixed pressure and 
temperature, the volume and moles of a gas are directly 
proportional.

V  n

V1

n1


RT

P
 constant 

V2

n2
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Example Problem 5.1

• A common laboratory cylinder of methane has a volume of 
49.0 L and is filled to a pressure of 154 atm. Suppose that all 
of the CH4 from this cylinder is released and expands until its 
pressure falls to 1.00 atm. What volume would the CH4

occupy?
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Example Problem 5.2

• A balloon is filled with helium and its volume is 2.2 L at 298 K. 
The balloon is then dunked into a thermos bottle containing 
liquid nitrogen. When the helium in the balloon has cooled to 
the temperature of the liquid nitrogen (77 K), what will the 
volume of the balloon be?
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Units and the Ideal Gas Law

• Temperature must be expressed in Kelvin for all gas calculations!

• Negative temperatures would result in negative pressures, 
volumes, and moles.

• In some engineering fields, the Rankine temperature scale is 
used, which is another absolute temperature scale. 

• 0˚R = 0 K; 1˚R = 1.8 K

• The unit for moles is always mol.

• The units for measuring pressure and volume can vary. In gas 
calculations, these units must agree with those of the gas constant

• R = 8.314 J mol-1 K-1

• R = 0.08206 L atm mol-1 K-1

• R = 62.37 L torr mol-1 K-1
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Example Problem 5.3

• A sample of CO2 gas has a volume of 575 cm3 at 752 torr and 

72˚F. What is the mass of carbon dioxide in this sample?
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Partial Pressure

• Air is a mixture of gases.

• Gas laws do not depend on identity of gases.

• Pressure due to total moles gas present.

• The pressure exerted by a component of a gas mixture is 
called the partial pressure for the component gas.
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Partial Pressure

• Dalton’s law of partial pressures:  The total pressure (P) of a 
mixture of gases is the sum of the partial pressures of the 
component gases (Pi).

• Daltons Law can be expressed in terms of mole fraction.

• Mole fraction (Xi) for a gas in a gas mixture is the moles of 
the gas (ni) divided by the total moles gas present.

• The partial pressure of each gas is related to its mole 
fraction.

P  Pii

Xi 
ni
ntotal

                 Pi  XiP
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Example Problem 5.4

• A scientist tries to generate a mixture of gases similar to a 
volcano by introducing 15.0 g of water vapor, 3.5 g of SO2, 

and 1.0 g of CO2 into a 40.0 L vessel held at 120.0˚C. 
Calculate the partial pressure of each gas and the total 
pressure.
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Example Problem 5.5

• A mixture has the mole fractions given in the following table:

• If the desired pressure is 750. torr, what should the partial 
pressures be for each gas? 

• If the gas is to be in a 15.0 L vessel held at 30°C, how many 
moles of each substance are needed?

Gas N2 O2 H2O SO2

Mole Fraction 0.751 0.149 0.080 0.020
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Stoichiometry of Reactions Involving Gases

• For reactions involving gases, the ideal gas law is used to 
determine moles of gas involved in the reaction.

• Use mole ratios (stoichiometry)

• Connect number of moles of a gas to its temperature, 
pressure, or volume with ideal gas law

PV  nRT
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Example Problem 5.6

• When an experiment required a source of carbon dioxide, a 
student combined 1.4 g of sodium bicarbonate (NaHCO3) with 
excess hydrochloric acid (HCl). If the CO2 produced is 

collected at 722 torr and 17˚C, what volume will the gas 
occupy?
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STP Conditions

• Standard temperature and pressure, STP, for a gas is 0˚C 
(273.15 K) and 1 atm.

• For one mole of gas at STP, the standard molar volume is 
22.41 L (calculated using ideal gas law)

• This number provides a conversion factor for 
stoichiometric problems that include gases, provided the 
STP conditions are maintained.
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Example Problem 5.7

• Carbon dioxide can be removed from a stream of gas by 
reacting it with calcium oxide to form calcium carbonate. If we 
react 5.50 L of CO2 at STP with excess CaO, what mass of 
calcium carbonate will form?
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Kinetic-Molecular Theory and Ideal versus Real Gases

• In many important practical settings, gases do not always 
behave ideally, especially at very high pressure and/or very 
low temperature.

• Nonideal gas behavior can be explained using Kinetic 
Molecular Theory.

• Provides connections between observed macroscopic 
properties of gases, the gas law equation, and the 
behavior of gas molecules on a microscopic scale.
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Postulates of the Model

• Gases are made up of large collections of particles, which are 
in constant, random motion.

• Gas particles are infinitely small and occupy negligible 
volume.

• Gas particles move in straight lines except when they collide 
with other particles or with the container walls.  These 
collisions are elastic, so kinetic energy of particles is 
conserved.

• Particles interact with each other only when collisions occur.
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Postulates of the Model

• The average kinetic energy of a gas is proportional to the 
absolute temperature of the gas but does not depend upon 
the identity of the gas

• As temperature increases, average speed for gas 
molecules increases.

• Faster moving molecules collide more often and with 
greater force, exerting a higher pressure.

KEavg 
1

2
mrms

2
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Postulates of the Model

• At a given temperature, gas molecules in a sample can be 
characterized by an average speed.

• Some gas molecules move faster than average, some 
move slower than average.

• The distribution function that describes the speeds of a 
collection of gas particles is known as the Maxwell-
Boltzmann distribution of speeds.
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Postulates of the Model

• As temperature increases, average speed increases.

• As temperature increases, the fraction of molecules 
moving at higher speeds increases.
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Postulates of the Model

• For a fixed temperature, as the molecular weight increases, 
the average speed for the gas molecules decreases.
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Postulates of the Model

• The equation for the Maxwell-Boltzmann distribution 
describes N(), which is the number of molecules moving with 
speeds close to .

• Most gas molecules move at the most probable speed, which 
is the peak of the curve in the Maxwell-Boltzmann plot.

N()

Ntotal

 4
M

2RT







3/2

2eM
2 /2RT

mp 
2RT

M
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Postulates of the Model

• The Maxwell-Boltzmann distribution can be described in 
terms of the average speed or root-mean-square speed.

• Average speed, avg, is 1.128 times mp.

• The existence of the “tail” on the distribution curve at 
high speeds will pull the average to a speed higher 
than the most probable value.

• rms = 1.085 times avg.

• The root-mean-square speed is useful because the 
average kinetic energy is given by 

KEavg 
1

2
m rms

2
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Real Gases and Limitations of the Kinetic Theory

• Kinetic molecular theory implies that the volume of a gas 
molecule is insignificant compared to the “empty space” 
volume for a gas sample.

• Mean free path used to test validity of assumption.

• Average distance a particle travels between collisions 
with other particles.

• The mean free path for air at room temperature and 
atmospheric pressure is 70 nm.

• This value is 200 times larger than the typical 
radius of a small molecule like N2 or O2.

• Volume of empty space in a gas is 1 million times that 
of gas particle volume.

42

Real Gases and Limitations of the Kinetic Theory

• The volume of a gas particle is significant compared to the 
“empty space” volume under high pressure conditions.

• Mean free path decreases as pressure increases.

• Gas molecules are very close together.

• Therefore, volume of the gas particles becomes 
significant.
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Real Gases and Limitations of the Kinetic Theory

• Kinetic molecular theory asserts that gas molecules move in straight lines 
and interact only through perfectly elastic collisions.

• Gas molecules neither attract nor repel.

• Strength of attractive forces small compared to kinetic energy of gas 
molecules.

• Attractive and repulsive forces are significant under conditions of low 
temperature.

• Kinetic energy decreases with temperature.

• Gas molecules experience “sticky” collisions.

• Collision rate decreases, decreasing the pressure.
44

Real Gases and Limitations of the Kinetic Theory

• The ideal gas model breaks down at high pressures and low 
temperatures.

• high pressure: volume of particles no longer negligible

• low temperature: particles move slowly enough to interact
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Correcting the Ideal Gas Equation

• van der Waals equation is commonly used to describe the 
behavior of real gases

• a corrects for attractive forces.

• Molecules with stronger attractive forces have larger a
values.

• b corrects for the volume occupied by gas molecules.

• Large molecules have larger b values.

P 
an2

V 2







V  nb  nRT
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Correcting the Ideal Gas Equation

• The van der Waals 
constants a and b
are compound 
specific.

• Both are zero in 
gases behaving 
ideally.
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Example Problem 5.8

• An empty 49.0 L methane storage tank has an empty mass of 
55.85 kg and, when filled, has a mass of 62.07 kg. Calculate 
the pressure of CH4 in the tank at 21˚C using both the ideal 
gas equation and the van der Waals equation. 

• What is the percentage correction achieved by using the more 
realistic van der Waals equation?
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Gas Sensors

• The concentration of air pollutants is monitored by the EPA.

• The concentration of a gas is proportional to the partial 
pressure of the gas.

• Gas pressure sensors are used to monitor changes in partial 
pressure or concentration of gases.
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Capacitance Manometer

• Changes in pressure cause 
deflections in the 
diaphragm, changing the 
capacitance.

• Used to measure 
pressures from 0.001 -
1000 torr
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Thermocouple Gauge

• Measures pressure by the 
cooling effect of colliding 
gas molecules.

• Higher pressure, more 
collisions with heated 
filament, lowers filament 
temperature.

• Used to measure 
pressures from 0.01 to 
1.0 torr
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Ionization Gauge

• Pressure measured by 
producing gaseous caions 
with the electrons emitted 
from a hot filament.

• Higher pressure, more 
gas cations, more 
current collected at the 
grid.

• Used to measure 
pressures as low as 
10-11 torr.

52

Gas Sensors

• A thermocouple gauge, a capacitance manometer, and an 
ionization gauge.
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Mass Spectrometers

• Mass spectrometers can be used to measure partial 
pressures for gas mixtures.

• Mass spectrometers ionize gas like an ionization gauge, 
but can select the mass of the gas being analyzed with the 
use of a magnetic field.

• Several masses can be scanned simultaneously allowing 
for multiple gas analyses.

• Current generated can be used to determine the partial 
pressure of gas.


