

Warning!!

- These slides contains visual aids for learning BUT they are NOT the actual lecture notes!
- Failure to attend to lectures most probably result in failing the lecture!
- So I strongly recommend that you attend to the classes. Take a pen, a notebook and WRITE!

Chapter Objectives

- · Describe the chemical composition of gasoline.
- Write balanced chemical equations for the combustion of fuels.
- Calculate the amount of product expected from a chemical reaction, given the amounts of reactants used.
- Calculate the amounts of reactants needed in a chemical reaction to produce a specified amount of product.

Chapter Objectives

- Identify a limiting reagent and calculate the amount of product formed from a nonstoichiometric mixture of reactants.
- Calculate the percentage yield of a chemical reaction.
- Identify at least two common additives in gasoline and explain why they are used.

Gasoline and Other Fuels

- Gasoline is a very complex mixture of compounds, but contains predominantly alkanes.
 - Alkanes are hydrocarbons where the carbon atoms are linked together with single bonds.
 - Hydrocarbons are compounds composed only of hydrogen and carbon.

Octa	ane: C	omple	ete (Combustion
2 C ₀ H ₁₀	+ 25.02		иню	 Octane is used as a simplified model for gasoline.
6333			9 9 9 9 9 9 9 9 9 9 9 9 9 9	 Complete combustion of octane with <u>excess</u> oxygen produces carbon <u>di</u>oxide and water.
****			999 999 93	• The stoichiometric ratio between octane and oxygen is 2:25.
				 The stoichiometric ratio between carbon <u>di</u>oxide and water is 16:18.

Octane: Incomplete Combustion

$2C_8E_{28} \qquad + \qquad$	17 O ₂	→ 16 CO +	18 H.O	Incor when limite
3335 3335			55 55 55 55 55 55 55 55 55 55 55 55 55	• The solution of the solution

Incomplet	e combus	tion occurs
when the	amount o	f oxygen is
limited.		

The products are
carbon monoxide and
water

The stoichiometric ratio between octane and oxygen is 2:17.

The stoichiometric ratio between carbon <u>mon</u>oxide and water is 16:18.

10

12

Octane: Combustion

- Complete and incomplete combustion both occur with the relative amounts of each determined by:
 - · Ratio of fuel to oxygen
 - Engine temperature
 - Engine tuning
- Engineers help control these factors to maximize fuel efficiency.

11

Fundamentals of Stoichiometry

- Stoichiometry is a term used to describe quantitative relationships in chemistry.
 - "How much?" of a product is produced or reactant is consumed.
 - Balanced chemical equation needed.
 - Conversion between mass or volume to number of moles frequently needed.

- If we have 153 g of S_8 and an excess of phosphorus, what mass of P_4S_3 can be produced in the reaction shown?

$$8P_4 + 3S_8 \rightarrow 8P_4S_3$$

3

Limiting Reactants

- In many chemical reactions, one reactant is often exhausted before the other reactants. This reactant is the limiting reactant.
- · Limiting reactant is determined using stoichiometry.
- The limiting reactant limits the quantity of product produced.

Limiting Reactants

- In many cases, we manipulate the amounts of reactants to ensure that one specific compound is the limiting reactant.
 - For example, a more expensive or scarce reagent is usually chosen to be the limiting reagent.
- Other times, it is best to have a stoichiometric mixture (equal ratio of moles) to prevent waste.
- For example, rocket fuel is designed so that no mass is left over, which would add unnecessary weight to the rocket.

21

23

Example Problem 4.4

 A solution of hydrochloric acid contains 5.22 g of HCI. When it is allowed to react with 3.25 g of solid K₂CO₃, the products are KCI, CO₂, and H₂O. Which reactant is in <u>excess</u>?

Example Problem 4.5

- If 28.2 g of P_4 is allowed to react with 18.3 g of S_8 , which is the limiting reactant?

$$8P_4 + 3S_8 \rightarrow 8P_4S_3$$

Example Problem 4.6

 If 45.0 kg of methanol is allowed to react with 70.0 kg of isobutene, what is the maximum mass (theoretical yield) of MTBE that can be obtained?

 $\begin{array}{c} \mathrm{CH_{3}OH} + \mathrm{(CH_{3})_{2}C=} \mathrm{CH_{2}} \rightarrow \mathrm{(CH_{3})_{3}COCH_{3}}\\ \mathrm{Methanol} \qquad \mathrm{Isobutene} \qquad \mathrm{MTBE} \end{array}$

22

26

Example Problem 4.7

- The solid fuel rockets of the space shuttle are based on the following reaction between ammonium perchlorate and aluminum:
 - $3NH_4ClO_4(s) + 3Al(s) \rightarrow Al_2O_3(s) + AlCl_3(g) + 3NO(g) + 6H_2O(g)$
- If either reactant is in excess, unnecessary mass will be added to the shuttle, so a stoichiometric mixture is desired. What mass of each reactant should be used for every kilogram of the fuel mixture?

Theoretical Yield

25

- The maximum mass of a product that can be obtained in a reaction is determined by the limiting reactant.
 - Determine which reactant is the limiting reactant.
 - Calculate the mass of product that can be made from the limiting reactant. This mass is the theoretical yield.
 - In stoichiometric mixtures, however, both reactants are consumed completely, so either could be considered the limiting reactant.

Theoretical and Percent Yields Many factors determine the amount of desired product actually produced in a reaction. Temperature of the reaction The possibility of side reactions Further reaction of the product Time

Example Problem 4.8

32

34

Example Problem 4.9

• If 750.0 mL of 0.806 M NaClO is mixed with excess ammonia, how many moles of hydrazine can be formed?

 $NaClO(aq) + 2NH_3(aq) \rightarrow N_2H_4(aq) + NaCl(aq) + H_2O(I)$

• If the final volume of the resulting solution is 1.25 L, what will be the molarity of hydrazine?

31

35

Solution Stoichiometry

- A titration is a common laboratory technique that uses solution stoichiometry.
 - A solution-phase reaction is carried out under controlled conditions so that the amount of one reactant can be determined with high precision.
 - An indicator is a dye added to a titration to indicate when the reaction is complete.

Example Problem 4.10

 If 24.75 mL of 0.503 M NaOH solution is used to titrate a 15.00 mL sample of sulfuric acid, H₂SO₄, what is the concentration of the acid?

Alternative Fuels and Fuel Additives

- Fuel additives are added to gasoline to improve engine performance, reduce undesirable engine emissions, and reduce dependence on imported petroleum products.
 - Some additives, oxygenates , increase the oxygen content of gasoline and gasoline containing them is called an oxygenated fuel.
 - Ensure more complete combustion by reducing emitted carbon monoxide, hydrocarbons, and soot.
 - Gasoline containing at least 2% oxygen by weight is call reformulated gasoline (RFG), which is mandatory in some areas with severe pollution.

Alternative Fuels and Fuel Additives

- Additives improve engine performance by improving the octane rating.
 - Higher octane rating delivers better performance and has lower "knocking".
 - Knock is the result of premature cylinder ignition when gasoline-air mixture is compressed.

Alternative Fuels and Fuel Additives

- Ethanol is another oxygenate.
 - Produced from crops such as corn, barley, and wheat.
 - Gasoline containing 10% ethanol can be burned in modern automobiles.
 - Gasoline containing 85% ethanol can be burned in specially designed engines. At this concentration, it is considered an alternative fuel rather than an oxygenate.