

Warning!!

Chapter Objectives

- List at least three characteristics of explosive chemical reactions.
- Explain balancing a chemical reaction as an application of the law of conservation of mass.
- List at least three quantities that must be conserved in chemical reactions.
- Write balanced chemical equations for simple reactions, given either an unbalanced equation or a verbal description.

Chapter Objectives

- Explain the concept of a mole in your own words.
- Interpret chemical equations in terms of both moles and molecules.
- Interconvert between mass, number of molecules, and number of moles.
- Determine a chemical formula from elemental analysis (i.e., from \% compositions)

Chapter Objectives

- Define the concentration of a solution and calculate the molarity of solutions from appropriate data
- Calculate the molarity of solutions prepared by dilution or calculate the quantities needed to carry out a dilution to prepare a solution of a specified concentration.
- Distinguish between electrolytes and nonelectrolytes and explain how their solutions differ.

Chapter Objectives

- Describe the species expected to be present (ions, molecules, etc.) in various simple solutions.
- Recognize common strong acids and bases.
- Write molecular and ionic equations for acid-base neutralization reactions.

- Dynamite is an explosive made from liquid nitroglycerin and an inert binder to form a solid material.
- Solids are easier to handle than liquids

Explosions

1. Explosions release a large amount of energy when a fairly complex molecule decomposes into smaller, simpler compounds.
2. Explosions occur very quickly.
3. Modern explosives are generally solids.

Explosions

- The destructive force of explosions is due in part to expansion of gases, which produces a shockwave.

Chemical Formulas and Equations

- Chemical formulas provide a concise way to represent chemical compounds
- Nitroglycerin, shown earlier, becomes $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$
- A chemical equation builds upon chemical formulas to concisely represent a chemical reaction.

Writing Chemical Equations

- Chemical equations represent the transformation of one or more chemical species into new substances
- Reactants are the original materials and are written on the left hand side of the equation.
- Products are the newly formed compounds and are written on the right hand side of the equation.

$$
\text { Reactants } \rightarrow \text { Products }
$$

Writing Chemical Equations

- Chemical formulas represent reactants and products.
- Phase labels follow each formula.
- solid $=(\mathrm{s})$
- liquid $=(\ell)$
- gas = (g)
- aqueous (substance dissolved in water) $=(\mathrm{aq})$
- Some reactions require an additional symbol placed over the reaction arrow to specify reaction conditions.
- Thermal reactions: heat (Δ)
- Photochemical reactions: light ($h v$)

Writing Chemical Equations

$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

- Different representations for the reaction between hydrogen and oxygen to produce water.

Balancing Chemical Equations

- The law of conservation of matter: matter is neither created nor destroyed.
- Chemical reactions must obey the law of conservation of matter.
- The same number of atoms for each element must occur on both sides of the chemical equation.
- A chemical reaction simply rearranges the atoms into new compounds.

Balancing Chemical Equations

- Balanced chemical equation for the combustion of methane.

Balancing Chemical Equations

Balancing Chemical Equations

Example Problem 3.1

- Write a balanced chemical equation describing the reaction between propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, and oxygen, O_{2}, to form carbon dioxide and water.

Solutions, Solvents, and Solutes

- For solutions, the concentration is a key piece of information.
- Concentration: relative amounts of solute and solvent.
- Concentrated: many solute particles are present.
- Dilute: few solute particles are present.

Solutions, Solvents, and Solutes

- Compounds can be characterized by their solubility.
- Soluble compounds dissolve readily in water.
- Insoluble compounds do not readily dissolve in water.
- Solubility can be predicted using solubility guidelines.

Aqueous Solutions and Net Ionic Equations

- Reactions that occur in water are said to take place in aqueous solution.
- Solution: homogeneous mixture of two or more substances.
- Solvent: solution component present in greatest amount.
- Solute: solution component present in lesser amount
- The preparation of a solution is a common way to enable two solids to make contact with one another.

Solutions, Solvents, and Solutes

Solution preparation:

- Solid CuSO_{4}, the solute, is transferred to a flask.
- Water, the solvent, is added
- The flask is shaken to speed the dissolution process
- Two solutions of CuSO
- Solution on the left is more concentrated, as seen from its darker color.

Solutions, Solvents, and Solutes

Solubility guidelines for insoluble salts

```
Table || 3.1
```

Solubility guidelines for ionic compounds in water at room temperature

Usually Insoluble	Exceptions
Phosphates ($\mathrm{PO}_{4}{ }^{--}$)	Soluble: $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}, \mathrm{Na}_{3} \mathrm{PO}_{4}, \mathrm{~K}_{3} \mathrm{PO}_{4}$
Carborates ($\mathrm{CO}_{3}{ }^{2-}$)	Soluble: $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$
Hydroxides (OH)	Soluble: $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ba}(\mathrm{OH})_{2}$ Moderately soluble: $\mathrm{Ga}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$
Sulfices (\mathbf{S}^{2-})	Soluble: $\left(\mathrm{NH}_{4}\right)$) $\mathrm{S}, \mathrm{Na}_{2} \mathrm{~S}, \mathrm{~K}_{2} \mathrm{~S}, \mathrm{MgS}$, CaS

Solutions, Solvents, and Solutes

- Electrolytes are soluble compounds that conduct current when dissolved in water.
- Weak electrolytes dissociate partially into ions in solution.
- Strong electrolytes dissociate completely into ions in solution.
- Nonelectrolytes do not dissociate into ions in solution.

Chemical Equations for Aqueous Reactions

- When a covalently bonded material dissolves in water and the molecules remain intact, they do not conduct current. These compounds are nonelectrolytes

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})
$$

- The water molecules are not shown explicitly, although their presence is indicated by the "(aq)" on the product side.

Example Problem 3.2

- Which of the following compounds would you predict are soluble in water at room temperature?
a) KClO_{3}
b) CaCO_{3}
c) BaSO_{4}
d) KMnO_{4}

Solutions, Solvents, and Solutes

a) Sugar, a nonelectrolyte, does not conduct current when dissolved in water
b) Acetic acid, a weak electrolyte, weakly conducts current when dissolved in water.
c) Potassium chromate, a strong electrolyte, strongly conducts current when dissolved in water.

Chemical Equations for Aqueous Reactions

- When an ionic solid dissolves in water, it breaks into its constituent ions. This is called a dissociation reaction. These compounds conduct electric current and are electrolytes.
$\mathrm{NaCl}(\mathrm{s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

Chemical Equations for Aqueous Reactions

- Aqueous chemical reactions can be written as a molecular equation. The complete formula for each compound is shown.
- Note, all of the species may not be molecules.

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})
$$

Chemical Equations for Aqueous Reactions

- Spectator ions are ions uninvolved in the chemical reaction. When spectator ions are removed, the result is the net ionic equation.
- Total ionic equation
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
- Net ionic equation

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})
$$

Spectator ion $=\mathrm{NO}_{3}^{-}$

Chemical Equations for Aqueous Reactions

- Dissociation of reactants and products is emphasized by writing a total ionic equation.
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
- Note: HNO_{3} is a strong acid and thus dissociates completely, while NH_{3} does not dissociate

Acid-Base Reactions

- Acids are substances that dissolve in water to produce H^{+}(or $\mathrm{H}_{3} \mathrm{O}^{+}$) ions.
- Examples: $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HCN}$

Bases are substances that dissolve in water to produce OH^{-} ions.

- Examples: $\mathrm{NaOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{NH}_{3}$

Acid-Base Reactions

Acid-Base Reactions

Strong and weak acids and bases			
	ng Acids		g Bases
HCl	Hydrochloric acid	LiOH	Lithium hydroxide
HNO_{3}	Nitric acid	NaOH	Sodium hydroxide
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid	KOH	Potassium hydroxide
HClO_{4}	Perchloric acid	$\mathrm{Ca}(\mathrm{OH})_{2}$	Calcium hydroxide
HBr	Hydrobromic acid	$\mathrm{Ba}(\mathrm{OH})_{2}$	Barium hydroxide
HI	Hydriodic acid	$\mathrm{Sr}(\mathrm{OH})_{2}$	Strontium hydroxide

Acid-Base Reactions

- Weak acids and bases partially dissociate in water.
- Notice the two-way arrows, which emphasize that the reaction does not proceed completely from left to right.
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Acid-Base Reactions

- Mixing an acid and a base leads to a reaction known as neutralization, in which the resulting solution is neither acidic nor basic.
- Net ionic equation for neutralization of strong acid and strong base.

$$
\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Precipitation Reactions

- A precipitation reaction is an aqueous reaction that produces a solid, called a precipitate.
- Net ionic reaction for the precipitation of lead(II) iodide.

$$
\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow \mathrm{PbI}_{2}(\mathrm{~s})
$$

Example Problem 3.3

Acid-Base Reactions

- Some common weak acids and bases.

Strong and weak acids and hases			
Weak Acids		Weak Bases	
$\mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoric acid	NH_{3}	Ammonia
HF	Hydrofluoric acid	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	Methylamine
$\mathrm{CH}_{3} \mathrm{COOH}$	Acetic acid		
HCN	Hydrocyanic acid		

- When aqueous solutions of acetic acid and potassium hydroxide are combined, a neutralization reaction will occur. Write the following equations:
a) molecular
b) total ionic
c) net ionic

Precipitation Reactions

Precipitation reaction between aqueous solutions of KI and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, which are both colorless.

- The bright yellow solid, Pbl_{2}, is produced.
- Pbl_{2} is insoluble as predicted by the solubility guidelines.

Example Problem 3.4

- When aqueous sodium carbonate and barium chloride are combined, the solution becomes cloudy white with solid barium carbonate. Write the following equations:
a) molecular
b) total ionic
c) net ionic

Interpreting Chemical Equations

- Balanced chemical reactions provide stoichiometric ratios between reactants and products. Ratios relate relative numbers of particles.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- 2 molecules H_{2} : 1 molecule O_{2} : 2 molecules $\mathrm{H}_{2} \mathrm{O}$
- 100 molecules H_{2} : 50 molecule O_{2} : 100 molecules $\mathrm{H}_{2} \mathrm{O}$

Interpreting Equations and the Mole

- Balanced chemical equations are interpreted on the microscopic and macroscopic level.
- Microscopic interpretation visualizes reactions between molecules.
- Macroscopic interpretation visualizes reactions between bulk materials.

Avogadro's Number and the Mole

- A mole is a means of counting the large number of particles in samples.
- One mole is the number of atoms in exactly 12 grams of ${ }^{12} \mathrm{C}$ (carbon-12).
- 1 mole contains Avogadro's number (6.022×10^{23} particles/mole) of particles.
- The mass of 6.022×10^{23} atoms of any element is the molar mass of that element.

- One mole samples of various elements. All have the same number of particles.

Avogadro's Number and the Mole

- Balanced chemical reactions also provide mole ratios between reactants and products.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- 2 moles H_{2} : 1 mole O_{2} : 2 moles $\mathrm{H}_{2} \mathrm{O}$

Determining Molar Mass

- The molar mass of a compound is the sum of the molar masses of all the atoms in a compound.

$$
\begin{aligned}
& \left(2 \mathrm{~mol} \mathrm{H} \times \frac{1.0 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)+\left(1 \mathrm{~mol} \mathrm{O} \times \frac{16.0 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{O}}\right) \\
& =18.0 \mathrm{~g} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Calculations Using Moles and Molar Mass

- Molar mass allows conversion from mass to number of moles, much like a unit conversion.
- $1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}=227.133 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$

$$
300.0 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}}{227.133 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}}
$$

$$
=1.320 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}
$$

Example Problem 3.6

- A sample of the explosive TNT $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}\right)$ has a mass of 650.5 g .
- How many moles of TNT are in this sample?
- How many molecules are in this sample?

Example Problem 3.5

- Determine the molar mass of each of the following compounds:
a) PbN_{6}
b) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}$
c) $\mathrm{Hg}(\mathrm{ONC})_{2}$

Calculations Using Moles and Molar Mass

- Avogadro's number functions much like a unit conversion between moles to number of particles.
- $1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}=6.022 \times 10^{23} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$ molecules
- How many molecules are in 1.320 moles of nitroglycerin?

$=7.949 \times 10^{23}$ molecules $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$

Elemental Analysis: Determining Empirical and Molecular Formulas

- Empirical formulas can be determined from an elemental analysis.
- An elemental analysis measures the mass percentage of each element in a compound.
- The formula describes the composition in terms of the number of atoms of each element.
- The molar masses of the elements provide the connection between the elemental analysis and the formula.

Example Problem 3.8

- The explosive known as RDX contains 16.22% carbon, 2.72% hydrogen, 37.84% nitrogen, and 43.22% oxygen by mass. Determine its empirical formula.

Elemental Analysis: Determining Empirical and Molecular Formulas

- Assume a 100 gram sample size

Percentage element \times sample size $=$ mass element in compound. (e.g 16% carbon $=16 \mathrm{~g}$ carbon)

- Convert mass of each element to moles using the molar mass.
- Divide by smallest number of moles to get mole to mole ratio fo empirical formula.
- When division by smallest number of moles results in small rational fractions, multiply all ratios by an appropriate integer to give whole numbers.
- $2.5 \times 2=5,1.33 \times 3=4$, etc.

Elemental Analysis: Determining Empirical and Molecular Formulas

- A molecular formula is a whole number multiple of the empirical formula.
- Molar mass for the molecular formula is a whole number multiple of the molar mass for the empirical formula.
- If the empirical formula of a compound is CH_{2} and its molar mass is $42 \mathrm{~g} / \mathrm{mol}$, what is its molecular formula?

Example Problem 3.9

- An alloy contains $70.8 \mathrm{~mol} \%$ palladium and $29.2 \mathrm{~mol} \%$ nickel. Express the composition of this alloy as weight percentage (wt \%).

Molarity

- Molarity, or molar concentration, M, is the number of moles of solute per liter of solution
- Provides relationship among molarity, moles solute, and liters solution.

$$
\operatorname{Molarity}(M)=\frac{\text { moles of solute }}{\text { liter of solution }}
$$

- If we know any two of these quantities, we can determine the third.

Example Problem 3.10

- A solution is prepared by dissolving 45.0 g of NaClO in enough water to produce exactly 750 mL of solution. What is the molarity of this solution?

Dilution

- Dilution is the process in which solvent is added to a solution to decrease the concentration of the solution.
- The number of moles of solute is the same before and after dilution.
- Since the number of moles of solute equals the product of molarity and volume ($M \times V$), we can write the following equation, where the subscripts denote initial and final values.

$$
M_{\mathrm{i}} \times V_{\mathrm{i}}=M_{\mathrm{f}} \times V_{\mathrm{f}}
$$

Example Problem 3.11

Explosive and Green Chemistry

- Green chemistry: the philosophy that chemical processes and products should be designed with the goal of reducing environmental impacts
- Firing of guns involves detonating a primer, which then induces a larger explosion.
- Traditional primers are leadbased, e.g., $\mathrm{Pb}\left(\mathrm{N}_{3}\right)^{2}$

- Research is underway to find less toxic primers
- A chemist requires 1.5 M hydrochloric acid, HCl , for a series of reactions. The only solution available is 6.0 M HCl . What volume of 6.0 M HCl must be diluted to obtain 5.0 L of 1.5 M HCl ?

