

Jacqueline Bennett • SUNY Oneonta

Warning!!

- These slides contains visual aids for learning BUT they are NOT the actual lecture notes!
- Failure to attend to lectures most probably result in failing the lecture!
- So I strongly recommend that you attend to the classes. Take a pen, a notebook and WRITE!

Chapter Objectives

- List at least three characteristics of explosive chemical reactions.
- Explain balancing a chemical reaction as an application of the law of conservation of mass.
- List at least three quantities that must be conserved in chemical reactions.
- Write balanced chemical equations for simple reactions, given either an unbalanced equation or a verbal description.

Chapter Objectives

- Explain the concept of a mole in your own words.
- Interpret chemical equations in terms of both moles and molecules.
- Interconvert between mass, number of molecules, and number of moles.
- Determine a chemical formula from elemental analysis (i.e., from % compositions).

Chapter Objectives

- Define the concentration of a solution and calculate the molarity of solutions from appropriate data.
- Calculate the molarity of solutions prepared by dilution or calculate the quantities needed to carry out a dilution to prepare a solution of a specified concentration.
- Distinguish between electrolytes and nonelectrolytes and explain how their solutions differ.

Chapter Objectives

- Describe the species expected to be present (ions, molecules, etc.) in various simple solutions.
- Recognize common strong acids and bases.
- Write molecular and ionic equations for acid-base neutralization reactions.

Explosions

- Explosions release a large amount of energy when a fairly complex molecule decomposes into smaller, simpler compounds.
- 2. Explosions occur very quickly.
- 3. Modern explosives are generally solids.

Chemical Formulas and Equations

- Chemical formulas provide a concise way to represent chemical compounds.
 - Nitroglycerin, shown earlier, becomes C₃H₅N₃O₉
- A chemical equation builds upon chemical formulas to concisely represent a chemical reaction.

- Chemical equations represent the transformation of one or more chemical species into new substances.
 - Reactants are the original materials and are written on the left hand side of the equation.
 - Products are the newly formed compounds and are written on the right hand side of the equation.

Reactants \rightarrow Products

Writing Chemical Equations

· Chemical formulas represent reactants and products.

Phase labels follow each formula.

- solid = (s)
- liquid = (*(*)
- gas = (g)
- aqueous (substance dissolved in water) = (aq)
- Some reactions require an additional symbol placed over the reaction arrow to specify reaction conditions.
 - Thermal reactions: heat (Δ)
 - Photochemical reactions: light (*hv*)

Balancing Chemical Equations

- The law of conservation of matter: matter is neither created nor destroyed.
 - Chemical reactions must obey the law of conservation of matter.
 - The same number of atoms for each element must occur on both sides of the chemical equation.
 - A chemical reaction simply rearranges the atoms into new compounds.

15

Balancing Chemical Equations

- Chemical equations may be balanced via inspection, which really means by trial and error.
 - Numbers used to balance chemical equations are called stoichiometric coefficients.
 - The stoichiometric coefficient multiplies the number of atoms of each element in the formula unit of the compound that it precedes.
 - Stoichiometry is the various quantitative relationships between reactants and products.

Example Problem 3.1

 Write a balanced chemical equation describing the reaction between propane, C₃H₈, and oxygen, O₂, to form carbon dioxide and water.

Aqueous Solutions and Net Ionic Equations

- Reactions that occur in water are said to take place in aqueous solution.
- Solution: homogeneous mixture of two or more substances.
 - Solvent: solution component present in greatest amount.
 - Solute: solution component present in lesser amount.
 - The preparation of a solution is a common way to enable two solids to make contact with one another.

Solutions, Solvents, and Solutes

- For solutions, the concentration is a key piece of information.
 - Concentration: relative amounts of solute and solvent.
 - Concentrated: many solute particles are present.
 - Dilute: few solute particles are present.

Solutions, Solvents, and Solutes

Solution preparation:

- Solid CuSO₄, the solute, is transferred to a flask.
- Water, the solvent, is added.
- The flask is shaken to speed the dissolution process.
- Two solutions of CuSO₄.
 Solution on the left is more concentrated, as seen from its darker color.

Solutions, Solvents, and Solutes

- · Compounds can be characterized by their solubility.
 - Soluble compounds dissolve readily in water.
 - Insoluble compounds do not readily dissolve in water.
- Solubility can be predicted using solubility guidelines.

Solutions, Solvents, and Solutes

Solubility guidelines for soluble salts

Solubility guidelines for ionic compounds in	water at room temperature	
Usually Soluble	Exceptions	
Group 1 cations (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺), ammonium (NH $_4^+$)	No common exceptions	
Nitrates (NO3 ⁻), nitrites (NO2 ⁻)	Moderately soluble: AgNO ₂	
Chlorides, bromides, iodides (Cl ⁻ , Br ⁻ , I ⁻)	Insoluble: AgCl, Hg2Cl2, PbCl2, AgBr, Hg2Br2, PbBr2, AgI, Hg2l2, and PbI2	
Fluorides (F ⁻)	Insoluble: MgF2, CaF2, SrF2, BaF2, PbF2	
Sulfates (SO_4^{2-})	Insoluble: BaSO4, PbSO4, HgSO4 Moderately soluble: CaSO4, SrSO4, Ag2SO4	
Chlorates (ClO3 ⁻), perchlorates (ClO4 ⁻)	No common exceptions	
Acetates (CH3COO ⁻)	Moderately soluble: AgCH ₃ COO	

iubility guidelines to	r insoluble salts
able 📕 3.1	
solubility guidelines for ionic cor	npounds in water at room temperature
Jsually Insoluble	Exceptions
Phosphates (PO ₄ ³⁻)	Soluble: (NH4)3PO4, Na3PO4, K3PO4
Carbonates (CO3 ²⁺)	Soluble: (NH4)2CO3, Na2CO3, K2CO3
Hydroxides (OH⁻)	Soluble: LiOH, NaOH, KOH, Ba(OH) ₂ Moderately soluble: Ca(OH) ₂ , Sr(OH) ₂
-16 Jac (62-)	Soluble: (NH.), S. No.S. K.S. May, Co.S.

Example Problem 3.2	
 Which of the following compounds would you predict are soluble in water at room temperature? 	
a) KClO ₃	
b) CaCO ₃	
c) BaSO ₄	
d) KMnO ₄	
	26

Chemical Equations for Aqueous Reactions

 When a covalently bonded material dissolves in water and the molecules remain <u>intact</u>, they do not conduct current. These compounds are nonelectrolytes.

$$C_6H_{12}O_6 (s) \longrightarrow C_6H_{12}O_6 (aq)$$

 The water molecules are not shown explicitly, although their presence is indicated by the "(aq)" on the product side.

• When an ionic solid dissolves in water, it breaks into its constituent ions. This is called a dissociation reaction. These compounds conduct electric current and are electrolytes.

NaCl (s)
$$\longrightarrow$$
 Na⁺ (aq) + Cl⁻ (aq)

Chemical Equations for Aqueous Reactions

 Dissociation of reactants and products is emphasized by writing a total ionic equation.

$$H^+(aq) + NO_3^-(aq) + NH_3(g) \longrightarrow NH_4^+(aq) + NO_3^-(aq)$$

- Note: ${\rm HNO}_3$ is a strong acid and thus dissociates completely, while ${\rm NH}_3$ does not dissociate

Acid-Base Reactions

- Acids are substances that dissolve in water to produce $H^{\scriptscriptstyle +}$ (or $H_3O^{\scriptscriptstyle +})$ ions.
 - Examples: HCl, HNO₃, H₃PO₄, HCN
- Bases are substances that dissolve in water to produce OHions.
 - Examples: NaOH, Ca(OH)₂, NH₃

Acid-Base Reactions

Strong acids and bases completely dissociate in water.

$$HCl(g) + H_2O(I) \longrightarrow H_3O^+(aq) + Cl^-(aq)$$

 $NaOH(s) \longrightarrow Na^{+}(aq) + OH^{-}(aq)$

Acid-Base Reactions									
All common strong acids and bases.									
Table 🛛 3.2									
Strong and weak acids and bases									
	Strong Acids	Sti	rong Bases						
HCl	Hydrochloric acid	LiOH	Lithium hydroxide						
HNC	3 Nitrie acid	NaOH	Sodium hydroxide						
H_2SC	94 Sulfuric acid	KOH	Potassium hydroxide						
HClO	04 Perchloric acid	Ca(OH) ₂	Calcium hydroxide						
HBr	Hydrobromic acid	Ba(OH) ₂	Barium hydroxide						
HI	Hydriodic acid	Sr(OH) ₂	Strontium hydroxide						

Acid-Base Reactions

· Weak acids and bases partially dissociate in water.

 Notice the two-way arrows, which emphasize that the reaction does not proceed completely from left to right.

 $CH_3COOH(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CH_3COO^-(aq)$

 $NH_3(aq) + H_2O(1) \longrightarrow NH_4^+(aq) + OH^-(aq)$

Acid-Base Reactions

· Some common weak acids and bases.

Table 📕 3.2 Strong and weak acids and bases Weak Acids Weak Bases H_3PO_4 Phosphoric acid $\rm NH_3$ Ammonia HF Hydrofluoric acid $\mathrm{CH}_3\mathrm{NH}_2$ Methylamine CH,COOH Acetic acid HCN Hydrocyanic acid Note: All common strong acids and bases are shown, but only representative examples of weak acids and bases are listed. 38

Acid-Base Reactions

- Mixing an acid and a base leads to a reaction known as neutralization, in which the resulting solution is neither acidic nor basic.
 - Net ionic equation for neutralization of strong acid and strong base.

$$H_3O^+(aq) + OH^-(aq) \longrightarrow 2H_2O(I)$$

Example Problem 3.3

- When aqueous solutions of acetic acid and potassium hydroxide are combined, a neutralization reaction will occur. Write the following equations:
 - a) molecular
 - b) total ionic
 - c) net ionic

Precipitation Reactions

- A precipitation reaction is an aqueous reaction that produces a solid, called a precipitate.
- Net ionic reaction for the precipitation of lead(II) iodide.

$$Pb^{2+}(aq) + 2I^{-}(aq) \longrightarrow PbI_{2}(s)$$

Interpreting Equations and the Mole

- Balanced chemical equations are interpreted on the microscopic and macroscopic level.
 - Microscopic interpretation visualizes reactions between molecules.
 - Macroscopic interpretation visualizes reactions between bulk materials.

Interpreting Chemical Equations

 Balanced chemical reactions provide stoichiometric ratios between reactants and products. Ratios relate relative numbers of particles.

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

- 2 molecules H₂: 1 molecule O₂: 2 molecules H₂O
- 100 molecules H_2 : 50 molecule O_2 : 100 molecules H_2O

45

Avogadro's Number and the Mole

- A mole is a means of counting the large number of particles in samples.
 - One mole is the number of atoms in exactly 12 grams of ¹²C (carbon-12).
 - 1 mole contains Avogadro's number (6.022 x 10²³ particles/mole) of particles.
 - The mass of 6.022 x 10²³ atoms of any element is the molar mass of that element.

Calculations Using Moles and Molar Mass

- Avogadro's number functions much like a unit conversion between moles to number of particles.
 - 1 mol $C_7H_5N_3O_6$ = 6.022 × 10²³ $C_7H_5N_3O_6$ molecules
 - How many molecules are in 1.320 moles of nitroglycerin?

1.320 mol C₇H₅N₃O₆ × $\frac{6.022 \times 10^{23} \text{ molecules C}_{7}H_{5}N_{3}O_{6}}{1 \text{ mol C}_{7}H_{5}N_{3}O_{6}}$

= 7.949×10^{23} molecules C₇H₅N₃O₆

Example Problem 3.6

- A sample of the explosive TNT $(C_7H_5N_3O_6)$ has a mass of $650.5\ g.$
 - How many moles of TNT are in this sample?
 - · How many molecules are in this sample?

Example Problem 3.7

- How many pounds of halite ($C_2H_6N_4O_5$) correspond to 315 moles? (1 pound = 454 g)

Elemental Analysis: Determining Empirical and Molecular Formulas

- Empirical formulas can be determined from an elemental analysis.
 - An elemental analysis measures the mass percentage of each element in a compound.
 - The formula describes the composition in terms of the number of atoms of each element.
 - The molar masses of the elements provide the connection between the elemental analysis and the formula.

Elemental Analysis: Determining Empirical and Molecular Formulas

- Assume a 100 gram sample size
- Percentage element × sample size = mass element in compound. (e.g., 16% carbon = 16 g carbon)
- · Convert mass of each element to moles using the molar mass.
- Divide by smallest number of moles to get mole to mole ratio for empirical formula.
- When division by smallest number of moles results in small rational fractions, multiply all ratios by an appropriate integer to give whole numbers.
 - 2.5 × 2 = 5, 1.33 × 3 = 4, etc.

Elemental Analysis: Determining Empirical and Molecular Formulas

- A molecular formula is a whole number multiple of the empirical formula.
 - Molar mass for the molecular formula is a whole number multiple of the molar mass for the empirical formula.
 - If the empirical formula of a compound is CH₂ and its molar mass is 42 g/mol, what is its molecular formula?

Example Problem 3.9

 An alloy contains 70.8 mol % palladium and 29.2 mol % nickel. Express the composition of this alloy as weight percentage (wt %).

Molarity

- Molarity, or molar concentration, *M*, is the number of moles of solute per liter of solution.
 - Provides relationship among molarity, moles solute, and liters solution.

Molarity
$$(M) = \frac{\text{moles of solute}}{\text{liter of solution}}$$

• If we know any two of these quantities, we can determine the third.

64

Example Problem 3.10

 A solution is prepared by dissolving 45.0 g of NaClO in enough water to produce exactly 750 mL of solution. What is the molarity of this solution?

Dilution

61

- Dilution is the process in which solvent is added to a solution to decrease the concentration of the solution.
 - The number of moles of solute is the same before and after dilution.
 - Since the number of moles of solute equals the product of molarity and volume ($M \times V$), we can write the following equation, where the subscripts denote initial and final values.

$$M_{\rm i} \times V_{\rm i} = M_{\rm f} \times V_{\rm f}$$

Example Problem 3.11 • A chemist requires 1.5 M hydrochloric acid, HCl, for a series of reactions. The only solution available is 6.0 M HCl. What volume of 6.0 M HCl must be diluted to obtain 5.0 L of 1.5 M HCl?

Explosive and Green Chemistry

- Green chemistry: the philosophy that chemical processes and products should be designed with the goal of reducing environmental impacts
 - Firing of guns involves detonating a primer, which then induces a larger explosion.
 - Traditional primers are leadbased, e.g., Pb(N₃)₂
 - Research is underway to find less toxic primers

