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Abstract. In [10] it is proved that any de Rham cohomology class on
a nonsingular quasiprojective complex algebraic variety is realized by a
real algebraic differential form and quoted that it is not known whether
the same holds for real algebraic varieties. In this paper, we prove
that certain de Rham cohomology classes on a real algebraic variety are
realized by real algebraic differential forms.

1. Introduction and the results

In 1963 Grothendieck proved that any de Rham cohomology class on a
smooth affine algebraic variety is represented by an (complex) algebraic dif-
ferential form ([8]). By the virtue of Hodge decomposition this result cannot
hold on smooth projective complex algebraic varieties. Nevertheless, in [10],
it is proved that every de Rham class on a smooth complex quasiprojec-
tive variety is realized by a real algebraic differential form: Let Z be a
nonsingular quasiprojective complex algebraic variety. Let H i

dR(Z) denote
the ith de Rham cohomology group of the underlying smooth manifold of
complex points of Z, which we will denote again by Z. Let H i

dR(Z)alg be
the subspace of classes in H i

dR(Z), which are represented by real algebraic
differential forms. Then, every de Rham class is realized by a real algebraic
differential form.

Although we believe that the same result holds for real algebraic varieties
we have no proof of that. Nevertheless, in several cases we have positive
partial results. We need some preliminaries to state our results.

By the virtue of the de Rham Theorem, we will identify the singular
cohomology with real coefficients of X with the de Rham cohomology of X.

We begin with the following observation:

Proposition 1.1. The subset H∗
dR(X)alg is a subalgebra of the cohomology

algebra of X. Also, if f : X → Y is an entire rational map of nonsingular
real algebraic varieties then f∗(H∗

dR(Y )alg) ⊆ H∗
dR(X)alg.

Moreover, H0
dR(X)alg = H0

dR(X) if and only if X is connected.
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The first part of the above proposition follows from the definitions and
the fact that the wedge product of real algebraic forms is also real algebraic
(see the next section for the definition of entire rational maps). The second
assertion follows from the fact that a locally constant entire rational map is
constant.

Let R be any commutative ring with unity. For an R-orientable nonsin-
gular compact real algebraic variety X define KH∗(X,R) to be the kernel
of the induced map on homology,

i∗ : H∗(X,R) → H∗(XC,R)

where i : X → XC is the inclusion map into some nonsingular projective
complexification. In [15] it is shown that KH∗(X,R) is independent of the
complexification X ⊆ XC and thus an (entire rational) isomorphism invari-
ant of X (see also [5]). Similarly, denote the image of the homomorphism

i∗ : H∗(XC,R) → H∗(X,R)

by ImH∗(X,R), which is also an isomorphism invariant. Indeed, one can
define ImH i(X,R), even for non orientable X, provided that R is a field
(cf. see [14]).

Theorem 1.2. Let X be a compact nonsingular real algebraic variety of
dimension n. Then

i.) H i
dR(X) = H i

dR(X)alg, for i = 1 and i = n;
ii.) ImH i

dR(X) ⊆ H i
dR(X)alg.

Corollary 1.3. Suppose that X is a compact nonsingular real algebraic
surface. Then H i

dR(X) = H i
dR(X)alg, for i ≥ 1.

Part (ii) of the above theorem is a consequence of the following theorem
of the first named author.

Theorem 1.4 ([10]). Every de Rham cohomology class on a nonsingular
quasiprojective complex algebraic variety is realized by a real algebraic dif-
ferential form. In other words, assuming the above notation, H i

dR(Z)alg =
H i

dR(Z).

Using the above theorem we can rephrase the statement H i
dR(X)alg =

H i
dR(X) as follows:

Proposition 1.5. Let X be a nonsingular real algebraic variety. Then
H i

dR(X)alg = H i
dR(X) if and only if there is a quasiprojective complexifica-

tion i : X → XX such that the induced map on cohomology ∗i : H i(XC,R) →
H i(X,R) is onto, or equivalently, the map on homology i∗ : H i(X,R) →
H i(XC,R) is injective.

The ‘if’ part follows from the above theorem and the universal coefficient
theorem. For the other part, note that any real algebraic differential form on
X extends to a holomorphic form on some quasiprojective complexification.
Since the de Rham cohomology algebra of X is finitely generated one can
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obtain the desired complexification by taking the intersection of the finitely
many quasiprojective complexifications corresponding to these generators.

Remark 1.6. Any regular map on a real algebraic variety extends to some
nonsingular complexification possibly after some blowing ups. However, a
closed real algebraic differential form on a real algebraic varieties may not
extend to any smooth projective complexification even as a closed smooth
form. Indeed, if a closed smooth p-form ω on X extends to some smooth
projective complexification as a closed smooth form then the cohomology
class [ω] must lie in ImHp

dR(X).
For example consider the variety S1 × · · · × S1. Since S1 bounds in its

complexification ImHp
dR(X) = 0, p > 0. However, by Theorem 1.2 (i) any

de Rham class on X is represented by a real algebraic differential form.

Example 1.7. Let Sn be the unit sphere in Rn+1. For odd n it is known
that Sn bounds in its complexification and therefore ImHn

dR(Sn) = 0 ([15]).
However, the volume form of X

ω =
1

2n π

n+1∑

i=1

(−1)i−1 xi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 · · · ∧ dxn+1

is clearly real algebraic. Hence, Hn
dR(Sn) = Hn

dR(Sn)alg.

Indeed the above holds for any homogeneous space: It is a classical result
that any compact Lie group has the structure of a real linear algebraic group
and this structure is unique. Moreover, Dovermann and Masuda proved in
[7] that any homogeneous space G/H has the structure of a nonsingular real
algebraic G-variety, and this structure is unique. In [12] Kulkarni proved
that the inclusion map of the real algebraic variety into some quasiprojec-
tive complexification G/H → (G/H)C is a homotopy equivalence. So, by
Theorem 1.4 we obtain

Corollary 1.8. If X = G/H is a homogeneous space as above then, for all
i ≥ 1, we have H i

dR(X) = H i
dR(X)alg.

For product varieties we have the following obvious result.

Proposition 1.9. Let X and Y be nonsingular real algebraic varieties.
Then,

⊕i+j=kH
i
dR(X)alg ⊗Hj

dR(Y )alg ⊆ Hk
dR(X × Y )alg.

Remark 1.10. Let X be a compact nonsingular real algebraic variety with
more than one topological component. Then Proposition 1.1 implies that
H0

dR(X)alg 6= H0
dR(X) and thus

⊕i+j=1H
i
dR(X)alg ⊗Hj

dR(S1)alg $ H1
dR(X × S1) = H1

dR(X × S1)alg,

where the last equality follows from Theorem 1.2. Hence, a real algebraic
de Rham class representing a product class may not be written as a product
of algebraic de Rham classes. Indeed, we can construct real algebraic forms
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explicitly representing the classes in H0
dR(X)⊗H1

dR(S1) (see the proof of the
next proposition). Moreover, the method of constructions works not only
S1 but for any odd dimensional standard sphere Sd. Namely, we have the
following result.

Proposition 1.11. Let X be any compact nonsingular real algebraic variety
and d a positive odd integer. Then

H0
dR(X)⊗Hd

dR(Sd) ⊆ Hd
dR(X × Sd)alg.

Next theorem is more technical and has more topological aspects.

Theorem 1.12. Now, let X ⊆ RN be a compact n-dimensional nonsingular
real algebraic variety, a ∈ Hk(X,Z) and k is odd. Let α be the image of the
class a under the Alexander duality

Hk(X,Z) ∼−→ H̄N−k−1(RN −X,Z).

If α is represented by a nonsingular algebraic variety L, which is also a
complete intersection, as above, then the class a is represented by a real
algebraic differential form.

We finish this section with a result on algebraic realization of smooth
closed manifolds. It is known that any smooth closed manifold M has an
algebraic model X such that any continuous complex vector bundle over X
is algebraic. It follows then H2i(X,Q) = H2i

C−alg(X,Q) = ImH2i(X,Q) (cf.
see [13]). Hence, by Theorem 1.2 we have the following theorem.

Theorem 1.13. Let M be a smooth connected closed manifold. Then M
has an algebraic model X with H i

dR(X) = H i
dR(X)alg, for i = 1, dim(M) or

any even integer.

2. Proofs

All real algebraic varieties under consideration in this report are nonsin-
gular. It is well known that real projective varieties are affine (Proposition
2.4.1 of [1] or Theorem 3.4.4 of [3]). Moreover, compact affine real algebraic
varieties are projective (Corollary 2.5.14 of [1]) and therefore, we will not
distinguish between real compact affine varieties and real projective vari-
eties.

For real algebraic varieties X ⊆ Rr and Y ⊆ Rs a map F : X → Y is
said to be entire rational if there exist fi, gi ∈ R[x1, . . . , xr], i = 1, . . . , s,
such that each gi vanishes nowhere on X and F = (f1/g1, . . . , fs/gs). We
say X and Y are isomorphic if there are entire rational maps F : X → Y
and G : Y → X such that F ◦ G = idY and G ◦ F = idX . Isomorphic
algebraic varieties will be regarded the same. We refer the reader for the
basic definitions and facts about real algebraic geometry to [1, 3].
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Proof of Theorem 1.2. (i.) The case i = 1: Since H i(X,R) = H i(X,Z)⊗ R
it suffices to show that each integer class is realized by a real algebraic
differential form. Let a ∈ H1(X,Z). Since S1 is a K(Z, 1) there exists a
smooth map f : X → S1 such that a = f∗([u]), where we can take u to be
the real algebraic 1-form on S1 ⊆ R2

u =
x dy − y dx

2π
.

The cohomology class 2a is represented by g∗[u], where g(x) = (f(x))2, and
the mod 2 reduction of 2a is clearly zero. Now, by a result of Ivanov ([11])
g : X → S1 is homotopic to an entire rational map. Then, Proposition 1.1
implies that 2a and hence a is represented by a real algebraic differential
form.

The case i = n: The top exterior power of the cotangent bundle of X is
algebraic, because the cotangent bundle is algebraic. So, any smooth volume
form can be approximated by a real algebraic differential form, which will
be readily closed by dimension reasons. Hence, Hn

dR(X) = Hn
dR(X)alg.

Part (ii) follows from [10] as mentioned earlier.
¤

Proof of Theorem 1.12. As before we can assume that a and α are integer
classes. Let L = Z(f1, . . . , fl), the common zero set of fi’s and such that at
each point x ∈ L the gradients of fi’s are linearly independent. Then the
differential form

ωL =
1

2l−1 π

l∑

i=1

(−1)i−1fi
df1 ∧ · · · ∧ dfi−1 ∧ dfi+1 · · · ∧ dfl

(f2
1 + · · ·+ f2

l )l/2

is a closed differential form on RN − L so that for any closed smooth ori-
entable submanifold K ⊂ RN − L of dimension l− 1 = N − dim(L)− 1 the
integral ∫

K
ωL

is, up to sign, the linking number of K and L.
Note that l, the codimension of L in RN , is the even integer k + 1 and

thus ωL is algebraic. Moreover, the proof of Alexander duality implies that
the restriction of the de Rham class [ωL] to X is, up to sign, is nothing but
the class a (cf. see page 351 in [6]). This finishes the proof. ¤
Proof of Proposition 1.11. Let X1, · · · , Xn be the topological components of
X and consider the locally constant function f0 : X → Rd+1 with f0(Xi) =
(4i, 0, · · · , 0), for i = 1, . . . , n. By Weierstrass Approximation Theorem we
can find a polynomial function f : X → Rd+1 such that f(Xi) ⊆ B(4i, 1

4).
Define a function φ : X × Sd → Rd+1 by φ(x, v) = f(x) + v, for any

(x, v) ∈ X × Sd, where Sd is the unit sphere in Rd+1. Note that for any
i, φ(Xi × Sd) ⊆ B(4i, 2) − B(4i, 1

2) and hence for any x ∈ Xi the image
φ({x} × Sd) is a sphere containing the point (4i + 3

8 , 0, . . . , 0) inside.
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Let ωi be the angular form of Rd+1 centered at (4i + 3
8 , 0, . . . , 0), i =

1, . . . , n,

ωi =
1

2d π

d+1∑

j=1

(−1)j−1xj
dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 · · · ∧ dxd+1

((x1 − 4j − 3
8)2 + · · ·+ x2

d+1)
(d+1)/2

.

Note that these real algebraic forms (d+1 is an even integer) are closed and
the pullbacks φ∗([ωi]) spans H0

dR(X)⊗Hd
dR(Sd). This finishes the proof. ¤
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