Georg Cantor (1845-1918)

\[H = \{ \text{Reals}, \text{Subsets of Reals} \} \]

\[N = \{ 1, 2, 3, 4, \ldots \} \text{ doğal sayılar kümesi} \]

\[Z = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \text{ tam sayılar kümesi} \]

\[Q = \{ \frac{a}{b} | a, b \in Z, b \neq 0 \} \text{ rasyonel sayılar kümesi} \]

\[\mathbb{R} = \text{Geriye sayılar kümesi} \]

\[A \subseteq B \iff \text{Her } a \in A \implies a \in B. \]

Tanım: A kümesi kendi içinde farklı bir \(B \subseteq A \) kümesi ile bir biyeksiyon oluşturursa \(A \) kümesi sonlu küme denir.

Bir bir Eşleme: \[A \rightarrow B \]

\[|A| = |B| \text{ eger } A \text{ ile } B \text{ arasında 1-1 eşleme vardır.} \]

\[A = B, \ A \neq B, \ |A| = |B| \implies B \text{ sonlu.} \]

Örneğ: \[B = \{ 1, 2, 3, 4, \ldots \} \quad 3 \{ 3, 4, 5, \ldots \} = A \]
$|A| = |B| \Rightarrow B$ sonsuz.

Russell Paradoxı:

$X = \text{Büyük küme}(\text{küme})$

$R \subseteq X, \ R = \{A \in X \mid A \notin A\}$

$R \in R \Rightarrow R \notin R$ \quad i) \quad R \notin R \Rightarrow R \notin R$

Gelişti.

Zermelo-Fraenkel Teorisi:

Sayısal Kümele:

A sayılabilse bir kümedir eğer A

$\mathbb{N} = \{1, 2, 3, 4, 5, 6, \ldots \}$

$A = \{a_1, a_2, a_3, a_4, \ldots \}$

$\mathbb{Z} = \{-\ldots, -3, -2, -1, 0, 1, 2, 3, 4, \ldots \}$

$= \{0, -1, 1, -2, 2, -3, 3, -4, 4, \ldots \}$

\mathbb{Q} sayılabilir bir kümedir

$\mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$
ϕ^+

\[\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots \]

\[\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \ldots \]

\[\frac{3}{1}, \frac{3}{2}, \frac{3}{3}, \frac{3}{4}, \frac{3}{5}, \ldots \]

\[\cdots \]

$\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q > 0 \}$

\mathbb{R} sayılabilir mi?

$[0, 1] \subset \mathbb{R}$ sayılamba.

Konid: Deyildi ki $[0, 1]$ sayıların okun.

$[0, 1] = \{ x \in \mathbb{R} | 0 \leq x \leq 1 \}

\[\{ a_1, a_2, a_3, a_4, \ldots \} \]

$a_1 = 0.25\ldots$

$a_2 = 0.35864\ldots$

$a_3 = 0.42609\ldots$

$b = 0.347\ldots \in [0, 1]$

$b = a_1, b = a_2, b = a_3, \ldots$

$b \notin [0, 1] \Rightarrow \text{değildir.}$
\(|\mathbb{N}| = 1\), \(|\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}|\)

Kardinalitelere \(|\mathbb{Q}| \) ile \(|\mathbb{R}|\) arasında olun bir kümeye var mı?

Kurt Gödel (1906 - 1978)

1940: Böyle bir kümenin, vorsa bir, vorsa olmuyan kanıtlanmaz.

\[
\begin{array}{ccc}
\mathbb{Q} & \subset & \mathbb{R} \\
0 & 1 & 2 \\
\end{array}
\]

\(\mathbb{Q}\) sayıları, \(\mathbb{R}\) sayıları

Tüm Teorilerin Kümesi Sayılabılır değildir.

Olumlu Teori: \(A \subseteq \mathbb{R}\)

\(A = [0, 2] \) \(\mathbb{P}(A) = 2\)

\(B = [-1, 3] \cup (4, 5) \), \(\mathbb{P}(B) = 4 + 1 = 5\).

\(\mathbb{P}(\mathbb{Q}) = ?\)

\(\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0, p \text{ ve } q \text{ tek veya her ikisi de çift} \right\} \)

\(\ldots 3\)

\(\ldots \)
\[\left| C \times [0,1] \times [0,1]\right| = |C| \]

Geometride Sonsuzluk:

Riemann Küresi

\[S^2 \setminus \{0\} \hookrightarrow \mathbb{C} = \mathbb{R}^2 \]

\[\mathbb{R}^2 \cup S^1 = S^2 \]

Projektif Düzlem

\[\mathbb{R}P^2 = \mathbb{R}^2 \cup S^1 \]

\[\mathbb{R}P^2 = \mathbb{D}^2 \cup \mathbb{M} \mathbb{B} \]

\[S^1 \hookrightarrow \mathbb{R}^2 \quad \mathbb{C} \quad \mathbb{R} \]

\[\mathbb{R} \]
BBC Belgeseli:
Dangerous Knowledge

1) Ahmet Gavık: "Matematik Felsefesi ve Matematiksel Mütistik (Nasıl Matematik Kötü)

2) TIMUR KORACAY "SOYUT MATEMATİK"

TABA AÇIK DERS

3) Halil İbrahim Korakay
"MATEMATİĞİN TEMELLERİ"

DÜÜ. G. V. Yayınları

arxiv.org

2. \(x^2 + y^2 = 1 \)

3. \(y^2 = x^3 + 3x + 1 \)

4. \(f(x, y) = 0, \ \text{der} (f) = 0 \)