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Abstract For general non commutative systems of Banach algebra elements, the one way “forward” spectral
mapping theorem fails for the Taylor split spectrum.

0. Introduction
The extension of spectral theory from single elements to finite or infinite systems is mostly confined to

commuting systems, although usually the definitions survive without this restriction. In a linear algebra,
or more generally a “linear category” A, a spectrum ω(a) ⊆ CX is derived from some collection H ⊆ A of
“invertible” or more generally non-singular, systems of elements a ∈ AX :

0.1 ω(a) = {λ ∈ CX : a− λ 6∈ H} .

For such a “joint spectrum” we look for the spectral mapping theorem

0.2 pω(a) = ωp(a) ⊆ CY ,

for a ∈ AX and systems p ∈ PolyYX of “non commutative polynomials”. Equality (0.2) divides into a forward
spectral mapping theorem,

0.3 pω(a) ⊆ ωp(a) ,

and a backward spectral mapping theorem,

0.4 ωp(a) ⊆ pω(a) .

Typically the forward theorem (0.3) is easier, and survives for other than commutative systems of elements,
combining the remainder theorem for non commutative polynomials with some kind of reverse semi-group
property of the non singulars H; the harder backward theorem (0.4) needs the “fundamental theorem of
algebra”, or more generally Liouville’s theorem from complex analysis. In the present note however we
observe that, for general non commuting systems, the forward spectral mapping theorem (0.3) is liable to
fail for the Taylor spectrum.
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1. Taylor invertibility
Suppose a ∈ A and b ∈ A, for a complex linear algebra A with identity 1; then we shall say that the

pair (a, b) ∈ A2 is Taylor invertible if it is at once left, right and middle invertible: here

1.1 (a, b) ∈ A−2left ⇐⇒ 1 ∈ (A A )

(
a
b

)
;

1.2 (a, b) ∈ A−2right ⇐⇒ 1 ∈ ( b −a )

(
A
A

)
;

1.3 (a, b) ∈ A−2middle ⇐⇒
(

1 0
0 1

)
∈
(
a
b

)
(A A ) +

(
A
A

)
( b −a ) .

Necessary for left invertibility is the implication, for arbitrary x ∈ A,

1.4 ax = bx = 0 =⇒ x = 0 ;

and for right invertibility is the implication, for arbitrary y ∈ A,

1.5 ya = yb = 0 =⇒ y = 0 .

If the elements a, b commute, in the sense ab = ba, and A is a Banach algebra, then (1.1)-(1.3) add up to
the condition that (0, 0) is not in the “Taylor split spectrum” of the pair (a, b): the point here is that we
are witholding commutivity. Without commutivity there is a “one way spectral mapping theorem” for left
and for right invertibility, and it would be nice to be able to say the same for “Taylor invertibility”. The
sequence of matrices

1.6
(
0, ( b −a ) ,

(
a
b

)
, 0
)

may [17],[12],[5],[8] be referred to as the Koszul complex of the pair (a, b) ∈ A2; of course it will not truly
be a “complex” unless

1.7 ( b −a )

(
a
b

)
≡ ba− ab = 0 ,

which says that a and b commute.
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2. Matrices
If A = C2×2 and

2.1 e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
,

then for arbitrary (λ, µ) ∈ C2 the conditions (1.1) and (1.2) are satisfied by (a, b) = (e− λ, f − µ): in words
both the left and the right spectrum of the pair (e, f) are [5],[8] empty. It is also true that the condition
(1.3) is satisfied unless (λ, µ) = (0, 0): however

2.2

(
1 0
0 1

)
6∈
(
e
f

)
(A A ) +

(
A
A

)
( f −e ) =

(
eA+Af eA+Ae
fA+Af fA+Ae

)
,

and hence the right hand side of (1.3) is equivalent to inclusion

2.3 1 ∈ (eA+Af) ∩ (Ae+ fA) ,

which says that each of the pairs (f, e) and (e, f) are “splitting exact”. However each of the pairs (f, e)
and (e, f) are [9] “skew exact”, so that if they were also exact then e and f would have to be left or right
invertible. Alternatively notice

2.4 ( f −e )

(
f
e

)
= 0 ;

(
f
e

)
6∈
(
e
f

)
A .

Indeed

2.5 ( f −e )

(
f
e

)
= f2 − e2 = 0− 0 ,

while

2.6

(
f
e

)
=

(
e
f

)
g =⇒ g = (fe+ ef)g = f2 + e2 = 0 ; =⇒ f = e = 0 .

Thus the middle spectrum, and hence the Taylor spectrum, of this pair does contain a point, and is given
by the singleton {(0, 0)}. From one point of view this might seem to be a good thing: the Taylor spectrum of
this unruly pair of matrices is nonempty. There are however consequences: without commutivity, the “one
way” spectral mapping theorem (0.3) now fails for the Taylor spectrum.
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3. Spectral mapping theorems
Suppose p ≡ p(z1, z2) ∈ Poly2 is a “polynomial” in two free variables, with in particular p(0, 0) = 0:

then in general, with no assumption of commutivity, there is implication

3.1 1 ∈ Ap(a, b) =⇒ 1 ∈ (A A )

(
a
b

)
and

3.2 1 ∈ p(a, b)A =⇒ 1 ∈ ( b −a )

(
A
A

)
;

thus if in particular p(a, b) ∈ A−1 is invertible then (a, b) ∈ A2 is both left and right invertible. In general
however this may not be enough to ensure middle invertibility. Indeed

3.3 p = z2z1 + z1z2 , (a, b) = (e, f) =⇒ p(a, b) = 1 6∈ (aA+Ab) ∪ (Aa+ bA) ,

which implies that the right hand side of (1.3) cannot hold. With

3.4 σleft(a, b) = {(λ, µ) ∈ C2 : (a− λ, b− µ) 6∈ A−2left} ,

3.5 σright(a, b) = {(λ, µ) ∈ C2 : (a− λ, b− µ) 6∈ A−2right}

and

3.6 σmiddle(a, b) = {(λ, µ) ∈ C2 : (a− λ, b− µ) 6∈ A−2middle} ,

(3.1) and (3.2) give inclusions

3.7 pσleft(a, b) ⊆ σleftp(a, b)

and

3.8 pσright(a, b) ⊆ σrightp(a, b) .

However, with (a, b) = (e, f) and p = z2z1 + z1z2 we have

3.9 pσmiddle(a, b) = {p(0, 0)} = {0} 6⊆ {1} = σp(a, b) .
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4. Shifts
For further examples of such misbehaviour we might recall the backward and forward shifts. If for

example ba ∈ A−1, (a, b) ∈ A2 is both left and right invertible: with

4.1 cba = 1 = bac ,

it is clear that

4.2 ( cb 0 )

(
a
b

)
= 1 = ( b −a )

(
ac
0

)
.

If ba and ab are both invertible then (a, b) ∈ A2 will also be middle invertible; generally however there is
equality

4.3

(
b′′

a′′

)
( b −a ) +

(
a
b

)
( a′ b′ ) ≡

(
aa′ + b′′b ab′ − b′′a
ba′ + a′′b bb′ − a′′a

)
,

and then equivalence

4.4

(
aa′ + b′′b ab′ − b′′a
ba′ + a′′b bb′ − a′′a

)
=

(
1 0
0 1

)
⇐⇒ aa′ + b′′b = 1 ; ab′ − b′′a = 0 ;

ba′ + a′′b = 0 ; bb′ − a′′a = 1 .

If for example

4.5 ba = 1 6= ab

then the top left hand condition on the right and side of (4.3) can easily fail; the condition (4.1) holds with
c = 1, while there are (x, y) ∈ A2 violating an obvious necessary condition for (1.3):

4.6 x = y = 1− ab =⇒ bx = ya = 0 6= yx ,

and hence 1 6∈ aA+Ab . Alternatively take (a, b) = (e, f) and (x, y) = (f, e) = (b, a) .
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5. Exactnesss
More general than either left or right invertibility is self exactness. We shall say that the pair (b, a) ∈ A2

is splitting exact, and write

5.1 (b, a) ∈ A−(1,1)left,right ,

provided

5.2 1 ∈ Ab+ aA .

More generally (cf [7]) we might write

5.3 A
−(m,n)
left,right = {(b, a) ∈ Am ×An : 1 ∈ Am · b+ a ·An ≡

m∑
k=1

Abk +

n∑
j=1

ajA} .

Now a ∈ A is to be self exact provided (a, a) is exact:

5.4 A−1left,right = {a ∈ A : (a, a) ∈ A−(1,1)left,right} ,

and more generally

5.5 A−nleft,right = {a ∈ An : 1 ∈ An · a+ a ·An} .

Exactness (5.1) makes sense in a ring; in a more general additive category it is necessary that

5.6 ∃ ba ∈ A ,

the product is defined. We do not however include the requirement that the chain condition

5.7 ba = 0 ∈ A

is satisfied; for some readers therefore (5.1) might be referred to as “non commutative exactness”. Self
exactness in a linear algebra would seem to generate another kind of spectrum, writing, for a ∈ An,

5.8 σleft,right(a) = {λ ∈ Cn : 1 6∈ An · (a− λ) + (a− λ) ·An} .

We can now enquire whether (0.3) or (0.4) hold with ω = σleft,right. For the forward version (0.3) observe
that if p ∈ Polymn with p(0) = 0, there is inclusion

5.9 Am · p(a) + p(a) ·Am ⊆ An · a+ a ·An .

Notice however that, with e and f as in (2.1),

5.10 σleft,right(e) = σleft,right(f) = ∅ ;

(Ae)−1Ae = Ae+ eA is the set of upper triangles, and (Af)−1Af = Af + fA the lower triangles.
Generally if N ⊆ A is a subring then, in search for a “projection property”, and hence (0.4), we borrow

from some approximation theory [11],[14],[15] a sort of residual quotient [10],[11],[14], and define

5.11 N : N = {c ∈ A : Nc+ cN ⊆ N} ;

now N ⊆ N : N is a two-sided ideal and we can form the quotient (N : N)/N . Provided 1 6∈ N then N ⊆ A
will be a proper two-sided ideal of the ring N : N ; if further A is a Banach algebra and N = cl(N) is closed
then B = (N : N)/N is a non trivial Banach algebra in its own right. Now if c ∈ comm(N) ⊆ N : N then

5.12 λ ∈ ∂σB [c]N =⇒ 1 6∈ N +A(c− λ) + (c− λ)A ;

if λn → λ with [c− λn]N ∈ B−1 then λ 6∈ σB [c]N :

5.13 1 ∈ c′c+ cc′′ +N =⇒ ‖[c− λn]−1N ‖ ≤ (‖c′‖+ ‖c′′‖)‖[c]N [c− λn]−1N ‖ .
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6. Koszul matrices
The problem for the “left,right invertibility” of (5.8) is that it is not clear, for a ∈ An, that N =

An · a+ a ·An ⊆ A is a subring, closed under multiplication. In a Banach algebra A it is also not clear that
it is norm closed; we would like, for N = An · a+ a ·An, implication

6.1 1 ∈ cl(N) =⇒ 1 ∈ N .

For “Taylor invertibility” the self exactness is applied not directly to the primary element a ∈ A or system
a ∈ An, but rather to its Koszul matrix. It is possible [12],[16] to pile up the Koszul complex of an n tuple
a ∈ An of linear algebra elements into a single matrix Λa in a larger algebra D, which is now potentially
self exact; the definition is inductive. For a single element a ∈ A, whose Koszul complex is just the triple
(0, a, 0) we set

6.2 Λa =

(
0 0
a 0

)
;

we could alternatively make an “upper triangular” version. Inductively define, with b ∈ Ak and c ∈ A,

6.3 Λ(b,c) =

(
Λb O
4c −Λb

)
∈ D2×2 ,

where

6.4 Λb ∈ D , 4c ∈ D

are respectively what has already been defined, and the block diagonal generated by the single element c ∈ A.
Generally if a ∈ An and p ∈ Polymn we define

6.5 ΛpΛa = Λp(a) .

Inductively we claim, for a ∈ An, that

6.6 a commutative ⇐⇒ Λ2
a = O :

note that if c ∈ comm(b) ⊆ A then 4c ∈ comm(Λb) ⊆ D and

Λ2
b = O ∈ D =⇒ Λ2

(b,c) = O ∈ D2×2 .

We now claim that

6.7 (a, a′) ∈ A2n commutative , a′ · a = 1 ∈ A =⇒ I ∈ DΛa + ΛaD ⊆ D ,

so that Λa is splitting self exact. We again argue by induction: if (6.7) holds with a = b ∈ Ak then it
continues to hold with a = (b, c) ∈ Ak × A. In turn if a ∈ An is commutative and p ∈ Polyn with p(0) = 0
then there is q ∈ Polynn with p(a) = q(a) · a and hence

6.8 p(a) ∈ A−1 =⇒ I ∈ DΛa + ΛaD ,

and the extension to p ∈ Polymn is induction on m. Next

6.9 I ∈ DΛb + ΛbD ⊆ D ⇐⇒
(
I O
O I

)
∈
(

Λb O
4c −Λb

)
D2×2 +D2×2

(
Λb O
4c −Λb

)
,

and we look for λ ∈ C for which

6.10 I 6∈ DΛb + ΛbD ⊆ D =⇒
(
I O
O I

)
6∈
(

Λb O
4c−λ −Λb

)
D2×2 +D2×2

(
Λb O
4c−λ −Λb

)
.

Implication (6.1), and the multiplicative property N ·N ⊆ N are clear when N = Aa+ aA ⊆ A is replaced
by N = DΛa + ΛaD ⊆ D and extend from Λb ∈ D to Λ(b,c) ∈ D2×2 whenever c ∈ comm(b) ⊆ A.
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7. Quasicommutivity
One of the reasons for at least trying to state problems for non commutative systems is the feeling that

the commutative theory ought to extend to quasicommutative systems [4],[5],[8]: associated with (a, b, c) ∈ A3

with

7.1 [a, b] ≡ ab− ba = c ; [a, c] = 0 = [b, c]

we have

7.2 0, ( a −b c ) ,

 b c 0
a 0 c
−1 −a b

 ,

 c
−b
−a

 , 0 .

If we can argue that, since we have a true complex here, the spectral mapping theorem holds for the
Taylor (split) spectrum (in particular for one polynomial in three variables), then two things will follow:
the spectral mapping theorem for the quasicommuting pair (a, b), and hence also quasinilpotency for the
commutator ab − ba. A new challenge would be to relax the quasicommutativity to commutivity ac = ca
and still have a “spectral” proof that σ(ab − ba) = {0}. If we extend the definition of “quasicommutative”
from n tuples a ∈ An to arbitrary systems a ∈ AX , in particular to A itself, then A is “quasicommutative”
iff

7.3 [A, [A,A]] = {0} ;

explicitly, for arbitrary (a, b, c) ∈ A3,

7.4 (ab− ba)c = c(ab− ba) .

Evidently Gelfand’s theorem holds for quasicommutative Banach algebras. More generally, according to
Feinstein, the spectral mapping theorem holds for Banach algebras which are nilpotent Lie [3]. The idea of
Boasso seems to be generally to consider

7.5 σ(a, b, ab− ba) .

Instead of relaxing the commutivity of a ∈ An, Wawrzyńczyk [18],[19] has extended the projection
property of the left spectrum to locally convex Waelbroeck algebras A, for which the invertible group A−1 ⊆ A
is topologically open and the inversion map z−1 continuous; it is tempting to try [20] and do the same thing
for the Taylor split spectrum.

Another problem, in either Banach or Waelbroeck algebras A, would be to extend Allan’s theorem [1]:
if G ⊆ C is an open connected set, and if

7.6 λ ∈ G =⇒ 1 ∈ A(a− λ) + (a− λ)A ⊆ A ,

does the holomorphic function a− z : G→ A have a holomorphic left,right inverse a∧ : G→ A, for which

7.7 a∧(z)(a− z) + (a− z)a∧(z) ≡ 1 : G→ A ?

8



8. Determinant and adjugate
Comparing the Koszul complex of a commuting system with that of its polynomial image offers [6] a

curious way to reach determinants and adjugates of operator matrices. For example if a = (b, c) ∈ A2 is a
pair of single elements then their Koszul complex (1.6) is given by (0, T∼, T, 0) where

8.1 T =

(
b
c

)
, T∼ = ( c −b ) ;

if we then attack (b, c) with a pair (p, q) in Poly2 of two-variable polynomials without constant term, then
we will replace T and T∼ with S and S∼ which will be derived from T and T∼:

8.2 S = UT ; S∼U = |U |T ; S∼ = T∼U∼ ; U∼S = T |U | .

With

8.3 R∼S = 1 = S∼R ,

and

8.4 RS∼ + SR∼ =

(
1 0
0 1

)
,

we get left and right invertibiity for (b, c);

8.5 (R∼U)T = 1 = T∼(U∼R) ;

and then also

8.6 RT∼U∼ + UTR∼ =

(
1 0
0 1

)
.

If now, using (6.7) and (6.8) we could replace (8.6) by

8.7 R∼UT∼ + TR∼U =

(
1 0
0 1

)
,

then (T∼, T ) would be exact and hence (b, c) would also be middle invertible.
If in (8.2) we have

8.8 U =

(
u11 u12
u21 u22

)
then [6], fixing U as (8.8), with mutually commuting (uij) and varying b, c in comm{uij}, (8.2) is uniquely
satisfied by

8.9 |U | = u11u22 − u21u12 , U∼ =

(
u22 −u12
−u21 u11

)
.

For the Koszul matrix Λa = Λ(b,c) of (6.3) we get

8.10 Λa =

 0 0 0
T 0 0
0 T∼ 0

 =


0 0 0 0
b 0 0 0
c 0 0 0
0 c −b 0

 .
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