EXERCISES AND SOLUTIONS
IN LINEAR ALGEBRA

Mahmut Kuzucuoǧlu
Middle East Technical University
matmah@metu.edu.tr
Ankara, TURKEY
March 14, 2015
TABLE OF CONTENTS

CHAPTERS
0. PREFACE .. 1
1. LINEAR ... ??
2. MAP ... ??
3. ... ??
4. ?? ... ??
5. ?? ... ??
Preface

I have given some linear algebra courses in various years. These problems are given to students from the books which I have followed that year. I have kept the solutions of exercises which I solved for the students. These notes are collection of those solutions of exercises.

Mahmut Kuzucuoğlu
METU, Ankara
March 14, 2015

M. Kuzucuoğlu
1.) Let \(A = \begin{bmatrix} 2 & 4 & -2 \\ 0 & -4 & 3 \\ -3 & -7 & 4 \end{bmatrix} \).

(a) Find the characteristic polynomial of \(A \).

Solution. The characteristic polynomial of \(A \) is \(f(x) = \det(xI - A) \). So,

\[
f(x) = \begin{vmatrix} x-2 & -4 & 2 \\ 0 & x+4 & -3 \\ 3 & 7 & x-4 \end{vmatrix} \\
= (x-2)(x+4 - 3) + 3 \begin{vmatrix} -4 & 2 \\ 7 & x-4 \end{vmatrix} \\
= (x-2)(x^2 - 16 + 21) + 3(12 - 2x - 8) \\
= (x-2)(x^2 + 5) + 3(4 - 2x) \\
= (x-2)(x-1)(x+1)
\]

(b) Find the minimal polynomial of \(A \).

Solution. We know that the minimal polynomial divides the characteristic polynomial and they same the same roots. Thus, the minimal polynomial for \(A \) is \(m_A(x) = f(x) = (x-2)(x-1)(x+1) \).

(c) Find the characteristic vectors and a basis \(B \) such that \([A]_B \) is diagonal.

Solution. The characteristic values of \(A \) are \(c_1 = 2, c_2 = 1, c_3 = -1 \).

\[
A - 2I = \begin{bmatrix} 0 & 4 & -2 \\ 0 & -6 & 3 \\ -3 & -7 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} -3 & -7 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{cases} -3x - 7y + 2z = 0 \\ 2y - z = 0 \end{cases} \Rightarrow \begin{cases} z = 2y \\ x = -y \end{cases}
\]

Thus, \(\alpha_1 = (-1, 1, 2) \) is a characteristic vector associated with the characteristic value \(c_1 = 2 \).

\[
A - I = \begin{bmatrix} 1 & 4 & -2 \\ 0 & -5 & 3 \\ -3 & -7 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & -2 \\ 0 & -5 & 3 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{cases} x + 4y - 2z = 0 \\ -5y + 3z = 0 \end{cases} \Rightarrow \begin{cases} y = 3k \\ z = 5k \\ x = -2k \end{cases}
\]

Thus, \(\alpha_2 = (-2, 3, 5) \) is a characteristic vector associated with the characteristic value \(c_2 = 1 \).

\[
A + I = \begin{bmatrix} 3 & 4 & -2 \\ 0 & -3 & 3 \\ -3 & -7 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 4 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{cases} 3x + 4y - 2z = 0 \\ y - z = 0 \end{cases} \Rightarrow \begin{cases} x = -2t \\ y = 3t \\ z = 3t \end{cases}
\]
Thus, $\alpha_3 = (-2, 3, 3)$ is a characteristic vector associated with the characteristic value $c_3 = -1$.

Now, $B = \{\alpha_1, \alpha_2, \alpha_3\}$ is a basis and $[A]_B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ is a diagonal matrix.

(d) Find A-conductor of the vector $\alpha = (1, 1, 1)$ into the invariant subspace spanned by $(-1, 1, 2)$.

Solution. Set $W = < (-1, 1, 2) >$ and denote the A-conductor of α into W by $g(x)$. Since $m_A(A) = 0$ we have $m_A(A) \alpha \in W$. Thus, $g(x)$ divides $m_A(x)$. Hence, the possibilities for $g(x)$ are $x - 2, x - 1, x + 1, (x - 2)(x - 1), (x - 2)(x + 1), (x - 1)(x + 1)$. We will try these polynomials. (Actually, the answer could be given directly.) Now,

$$(A - 2I)\alpha = \begin{bmatrix} 0 & 4 & -2 \\ -3 & 7 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -8 \end{bmatrix} \notin W \Rightarrow g(x) \neq x - 2,$$

$$(A - I)\alpha = \begin{bmatrix} 1 & 4 & -2 \\ -3 & 7 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -7 \end{bmatrix} \notin W \Rightarrow g(x) \neq x - 1,$$

$$(A + I)\alpha = \begin{bmatrix} 3 & 4 & -2 \\ -3 & 7 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ -5 \end{bmatrix} \notin W \Rightarrow g(x) \neq x + 1,$$

$$(A - 2I)(A - I)\alpha = \begin{bmatrix} 0 & 4 & -2 \\ -3 & 7 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 6 \\ -9 \end{bmatrix} \notin W \Rightarrow g(x) \neq (x - 2)(x - 1),$$

$$(A - 2I)(A + I)\alpha = \begin{bmatrix} 0 & 4 & -2 \\ -3 & 7 & 2 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ -25 \end{bmatrix} \notin W \Rightarrow g(x) \neq (x - 2)(x + 1),$$

$$(A - I)(A + I)\alpha = \begin{bmatrix} 1 & 4 & -2 \\ -3 & 7 & 3 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 15 \\ -30 \end{bmatrix} = -15\alpha_1 \in W \Rightarrow g(x) = x^2 - 1.$$

2.) Find a 3×3 matrix whose minimal polynomial is x^2.

Solution. For the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ we have $A \neq 0$ and $A^2 = 0$. Thus, A is a 3×3 matrix whose minimal polynomial is x^2.

3.) Prove that similar matrices have the same minimal polynomial.

Solution. Let A and B be similar matrices, i.e., $B = P^{-1}AP$ for some invertible matrix P. For any $k > 0$ we have $B^k = (P^{-1}AP)^k = P^{-1}A^kP$ which implies that $f(B) = P^{-1}f(A)P$ for any polynomial $f(x)$. Let f_A and f_B be the minimal polynomials of A and B, respectively. Then $f_A(B) = P^{-1}f_A(A)P = P^{-1}OP = O$ implies that f_B divides f_A. On the other hand, $O = f_B(B) = P^{-1}f_B(A)P$ gives us $f_B(A) = O$. Hence, f_A divides f_B. Therefore, we have $f_A = f_B$.

1. Math 262 Exercises and Solutions

(1) Let A be a 3×3 matrix with real entries. Prove that if A is not similar over \mathbb{R} to a triangular matrix then A is similar over \mathbb{C} to a diagonal matrix.

Proof. Since A is a 3×3 matrix with real entries, the characteristic polynomial, $f(x)$, of A is a polynomial of degree 3 with real coefficients. We know that every polynomial of degree 3 with real coefficients has a real root, say c_1.

On the other hand, since A is not similar over \mathbb{R} to a triangular matrix, the minimal polynomial of A is not product of polynomials of degree one. So one of the irreducible factor, h, of the minimal polynomial of A is degree 2. Then h has two complex roots, one of which is the conjugate of the other. Thus, the characteristic polynomial has one real root and two complex roots, c_1, λ and $\bar{\lambda}$.

The minimal polynomial over complex numbers is $(x - c_1)(x - \lambda)(x - \bar{\lambda})$ which implies that A is diagonalizable over complex numbers.

(2) Let T be a linear operator on a finite dimensional vector space over an algebraically closed field \mathbb{F}. Let f be a polynomial over \mathbb{F}. Prove that c is a characteristic value of $f(T)$ if and only if $f(t) = c$ where t is a characteristic value of T.

Proof. Let t be a characteristic value of T and β be a non-zero characteristic vector associated with the characteristic value t. Then, $T\beta = t\beta$, $T^2\beta = T(T\beta) = T(t\beta) = tT\beta = t^2\beta$, and inductively we can see that $T^k\beta = t^k\beta$ for any $k \geq 1$. Thus, for any polynomial $f(x)$ we have $f(T)\beta = f(t)\beta$ which means, since $\beta \neq 0$, that $f(t)$ is a characteristic value of the linear operator $f(T)$.

Assume that c is a characteristic value of $f(T)$. Since \mathbb{F} is algebraically closed, the minimal polynomial of T is product of linear polynomials, that is, T is similar to a triangular operator. If $[P^{-1}TP]_B$ is triangular matrix, then $[P^{-1}f(T)P]_B$ is
also triangular and on the diagonal of \([P^{-1} f(T)P]_B\) we have \(f(c_i)\), where \(c_i\) is a characteristic value of \(T\).

(3) Let \(c\) be a characteristic value of \(T\) and let \(W\) be the space of characteristic vectors associated with the characteristic value \(c\). What is the restriction operator \(T|_W\).

Solution. Every vector \(v \in W\) is a characteristic vector. Hence, \(Tv = cv\) for all \(v \in W\). Therefore, \(T|_W = cI\).

(4) Every matrix \(A\) satisfying \(A^2 = A\) is similar to a diagonal matrix.

Solution. \(A\) satisfies the polynomial \(x^2 - x\). Thus, the minimal polynomial, \(m_A(x)\), of \(A\) divides \(x^2 - x\), that is \(m_A(x) = x\) or \(m_A(x) = x - 1\) or \(m_A(x) = x(x - 1)\).

If \(m_A(x) = x\), then \(A = 0\).

If \(m_A(x) = x - 1\), then \(A = I\).

If \(m_A(x) = x(x - 1)\), then the minimal polynomial of \(A\) is product of distinct polynomials of degree one. Thus, by a theorem, the matrix \(A\) is similar to diagonal matrix with diagonal entries consisting of the characteristic values, 0 and 1.

(5) Let \(T\) be a linear operator on \(V\). If every subspace of \(V\) is invariant under \(T\) then it is a scalar multiple of the identity operator.

Solution. If \(\dim V = 1\) then for any \(0 \neq v \in V\), we have \(Tv = cv\), since \(V\) is invariant under \(T\). Hence, \(T = cI\).

Assume that \(\dim V > 1\) and let \(\mathcal{B} = \{v_1, v_2, \ldots, v_n\}\) be a basis for \(V\). Since \(W_1 = \langle v_1 \rangle\) is invariant under \(T\), we have \(Tv_1 = c_1 v_1\). Similarly, since \(W_2 = \langle v_2 \rangle\) is invariant under \(T\), we have \(Tv_2 = c_2 v_2\). Now, \(W_3 = \langle v_1 + v_2 \rangle\) is also invariant under \(T\). Hence, \(T(v_1 + v_2) = \lambda(v_1 + v_2)\) or \(c_1 v_1 + c_2 v_2 = \lambda(v_1 + v_2)\), which gives us \((c_1 - \lambda)v_1 + (c_2 - \lambda)v_2 = 0\). However, \(v_1\) and \(v_2\) are linearly independent and hence we should have \(c_1 = c_2 = \lambda\). Similarly, one can continue with the subspace \(\langle v_1 + v_2 + v_3 \rangle\).
and observe that \(T(v_3) = \lambda v_3 \). So for any \(v_i \in B \), we have \(Tv_i = \lambda v_i \). Thus, \(T = \lambda I \).

\(\text{(6)} \) Let \(V \) be the vector space of \(n \times n \) matrices over \(\mathbb{F} \). Let \(A \) be a fixed \(n \times n \) matrix. Let \(T \) be a linear operator on \(V \) defined by \(T(B) = AB \). Show that the minimal polynomial of \(T \) is the minimal polynomial of \(A \).

Solution. Let \(m_A(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \) be the minimal polynomial of \(A \), so that \(m_A(A) = 0 \). It is easy to see that \(T^k(B) = A^kB \) for any \(k \geq 1 \). Then, for any \(B \in V \) we have

\[
m_A(T)B = (T^m + a_{n-1}T^{m-1} + \cdots + a_1T + a_0I)B
\]
\[
= T^m(B) + a_{n-1}T^{m-1}(B) + \cdots + a_1T(B) + a_0B
\]
\[
= A^mB + a_{n-1}A^{m-1}B + \cdots + a_1AB + a_0B
\]
\[
= (A^n + a_{n-1}A^{n-1} + \cdots + a_1A + a_0I)B
\]
\[
= m_A(A)B = 0.
\]

Thus, we obtain \(m_A(T) = 0 \), which means that \(m_T(x) \) divides \(m_A(x) \).

Now, let \(m_T(x) = x^m + c_{m-1}x^{m-1} + \cdots + c_1x + c_0 \) be the minimal polynomial of \(T \), so that \(m_T(T) = 0 \). Then, for any \(B \in V \) we have

\[
m_T(A)B = (A^m + c_{m-1}A^{m-1} + \cdots + c_1A + c_0I)B
\]
\[
= A^mB + c_{m-1}A^{m-1}B + \cdots + c_1AB + c_0B
\]
\[
= T^m(B) + c_{m-1}T^{m-1}(B) + \cdots + c_1T(B) + c_0B
\]
\[
= (T^m + c_{m-1}T^{m-1} + \cdots + c_1T + c_0I)B
\]
\[
= m_T(T)B = 0,
\]

which leads to \(m_T(A) = 0 \), meaning that \(m_A(x) \) divides \(m_T(x) \). Since, monic polynomials dividing each other are the same we have \(m_T(x) = m_A(x) \).
(7) If E is a projection and f is a polynomial, then show that $f(E) = aI + bE$. What are a and b in terms of the coefficients of f?

Solution. Let $f(x) = c_0 + c_1 x + \cdots + c_n x^n$. Then, $f(E) = c_0 I + c_1 E + \cdots + c_n E^n$. Since E is a projection, $(E^2 = E)$, we have $E^k = E$ for any $k \geq 1$. Then,

$$f(E) = c_0 I + c_1 E + \cdots + c_n E^n = c_0 I + c_1 E + \cdots + c_n E = c_0 I + (c_1 + \cdots + c_n)E.$$

Thus, a is the constant term of f and b is the sum of all other coefficients.

(8) Let V be a finite dimensional vector space and let W_1 be any subspace of V. Prove that there is a subspace W_2 of V such that $V = W_1 \oplus W_2$.

Proof. Let $\mathcal{B}_{W_1} = \{\beta_1, \ldots, \beta_k\}$ be a basis for W_1. We may extend \mathcal{B}_{W_1} to a basis \mathcal{B}_V of V, say $\mathcal{B}_V = \{\beta_1, \ldots, \beta_k, \beta_{k+1}, \ldots, \beta_n\}$. Let W_2 be the subspace spanned by $\beta_{k+1}, \ldots, \beta_n$. Then, as they are linearly independent in V, we have $\mathcal{B}_{W_2} = \{\beta_{k+1}, \ldots, \beta_n\}$. Clearly $W_1 + W_2 = V$ as $W_1 + W_2$ contains a basis of V and so spans V. Let $\beta \in W_1 \cap W_2$. Then, $\beta \in W_1$ implies that $\beta = c_1\beta_1 + \cdots + c_k\beta_k$, and $\beta \in W_2$ implies that $\beta = c_{k+1}\beta_{k+1} + \cdots + c_n\beta_n$. The last two equalities give us $c_1\beta_1 + \cdots + c_k\beta_k - c_{k+1}\beta_{k+1} - \cdots - c_n\beta_n = 0$, but since β_i's are linearly independent, we obtain $c_i = 0$ for all $i = 1, \ldots, n$ which means that $\beta = 0$. That is $W_1 \cap W_2 = \{0\}$, and hence $V = W_1 \oplus W_2$.

(9) Let V be a real vector space and E be an idempotent linear operator on V, that is a projection. Prove that $I + E$ is invertible. Find $(I + E)^{-1}$.

Proof. Since E is an idempotent linear operator it is diagonalizable by Question 4. So there exists a basis of V consisting of characteristics vectors of E corresponding to the characteristic values 0 and 1. That is, there exists a basis
\[\mathcal{B} = \{ \beta_1, \ldots, \beta_n \} \] such that \(E\beta_i = \beta_i \) for \(i = 1, \ldots, k \), and \(E\beta_i = 0 \) for \(i = k + 1, \ldots, n \). Then \((I + E)\beta_i = 2\beta_i \) for \(i = 1, \ldots, k \) and \((I + E)\beta_i = \beta_i \) for \(i = k + 1, \ldots, n \), that is,

\[
[I + E]_\mathcal{B} = \begin{bmatrix} 2I_1 & 0 \\ 0 & I_2 \end{bmatrix},
\]

where \(I_1 \) stands for \(k \times k \) identity matrix, \(I_2 \) is \((n - k) \times (n - k) \) identity matrix and each 0 represents the zero matrix of appropriate dimension. It is now easy to see that \([I + E]_\mathcal{B} \) is invertible, since \(\det(I + E) = 2^k \neq 0 \).

To find the inverse of \((I + E)\), we note that

\[
([I + E]_\mathcal{B})^{-1} = \begin{bmatrix} \frac{1}{2}I_1 & 0 \\ 0 & I_2 \end{bmatrix} = \begin{bmatrix} I_1 & 0 \\ 0 & I_2 \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}I_1 & 0 \\ 0 & 0 \end{bmatrix} = I - \frac{1}{2}[E]_\mathcal{B}.
\]

Therefore, \((I + E)^{-1} = I - \frac{1}{2}E\). (You may verify that really this is the inverse, by showing that \((I + E)(I - \frac{1}{2}E) = (I - \frac{1}{2}E)(I + E) = I\).)

(10) Let \(T \) be a linear operator on \(V \) which commutes with every projection operator on \(V \). What can you say about \(T \)?

Solution. Let \(\mathcal{B} \) be a basis for \(V \) and \(\beta_i \in \mathcal{B}, i \in I \) where \(I \) is some index set. We can write \(V \) as a direct sum \(V = W_i \oplus U \) where \(W_i = \langle \beta_i \rangle \). Then there exists a projection \(E_i \) of \(V \) onto the subspace \(W_i \) for each \(i \in I \). Note that \(E_i v \in W_i \) for all \(v \in V \), and \(E_i \beta_i = \beta_i \). Now, by assumption, the linear operator \(T \) commutes with \(E_i \) for all \(i \in I \), that is, \(TE_i = E_i T \). Then, for \(\beta_i \in W_i \), we have \(TE_i \beta_i = E_i T \beta_i \in W_i \) implies that \(T \beta_i = T(E_i \beta_i) = c_i \beta_i \) for some constant \(c_i \in \mathbb{F} \). Thus, \(\beta_i \) is a characteristic vector of \(T \). Hence, \(V \) has a basis consisting of characteristic vectors of \(T \). It follows that \(T \) is a diagonalizable linear operator on \(V \).

(11) Let \(V \) be the vector space of continuous real valued functions on the interval \([-1, 1]\) of the real line. Let \(W_c \) be the space
of even functions, \(f(-x) = f(x) \), and \(W_o \) be the space of odd functions, \(f(-x) = -f(x) \).

a) Show that \(V = W_e \oplus W_o \).

b) If \(T \) is the indefinite integral operator \((Tf)(x) = \int_0^x f(t) dt \), are \(W_e \) and \(W_o \) invariant under \(T \)?

Solution. a) Let \(f \in V \). Then, we may write

\[
f(x) = \frac{f(x) + f(-x) + f(x) - f(-x)}{2} = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}.
\]

Observe that \(f_e(x) = \frac{f(x) + f(-x)}{2} \) is a continuous even function and \(f_o(x) = \frac{f(x) - f(-x)}{2} \) is a continuous odd function. Hence, \(f = f_e + f_o \), that is \(V = W_e + W_o \). To show that \(V = W_e \oplus W_o \), we need to show that \(W_e \cap W_o = \{0\} \). To see this, let \(g \in W_e \cap W_o \). Then, \(g \in W_e \) implies that \(g(-x) = g(x) \), and \(g \in W_o \) implies that \(g(-x) = -g(x) \). Thus, we have \(g(x) = -g(x) \) or \(g(x) = 0 \) for all \(x \in [-1, 1] \), which means that \(g = 0 \).

b) For \(f(x) = x \in W_o \), we have \((Tf)(x) = x^2/2 \notin W_o \), and for \(g(x) = x^2 \in W_e \), we have \((Tg)(x) = x^3/3 \notin W_e \). Thus, neither \(W_e \) nor \(W_o \) are invariant under \(T \).

(12) Let \(V \) be a finite dimensional vector space over the field \(\mathbb{F} \), and let \(T \) be a linear operator on \(V \), such that \(\text{rank}(T) = 1 \). Prove that either \(T \) is diagonalizable or \(T \) is nilpotent, but not both.

Proof. Since \(\text{rank}(T) = \dim(\text{Im}(T)) = 1 \), we have \(\dim(\text{Ker}(T)) = n - 1 \). Let \(0 \neq \beta \in \text{Im}(T) \). So, \(\text{Im}(T) = \langle \beta \rangle \). Since \(\beta \in \text{Im}(T) \), there exists a vector \(\alpha_0 \in V \) such that \(T\alpha_0 = \beta \). Let \(\{\alpha_1, \alpha_2, \ldots, \alpha_{n-1}\} \) be a basis for \(\text{Ker}(T) \). Then, \(B = \{\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_{n-1}\} \) is a basis for \(V \).

We have \(T\alpha_i = 0 \) for all \(i = 1, 2, \ldots, n-1 \).
If \(T\alpha_0 \in \text{Ker}(T) \), then \(T\alpha_0 = c_1\alpha_1 + \cdots + c_{n-1}\alpha_{n-1} \) and

\[
[T]_B = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 \\
c_1 & 0 & 0 & \cdots & 0 \\
c_2 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
c_{n-1} & 0 & 0 & \cdots & 0
\end{bmatrix}
\]

and it is easily seen that \(T^2 = 0 \) meaning that \(T \) is nilpotent. Note that at least one of \(c_i \)'s is nonzero, since otherwise, \(\alpha_0 \) would be in \(\text{Ker}(T) \) which contradicts with the choice of \(B \).

If \(T\alpha_0 \not\in \text{Ker}(T) \), then \(T\beta \in \text{Im}(T) \) and \(T\beta = c_0\beta \). In this case we construct a new basis \(B' = \{\beta, \alpha_1, \alpha_2, \ldots, \alpha_{n-1}\} \) and

\[
[T]_{B'} = \begin{bmatrix}
c_0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\]

which means that \(T \) is diagonalizable.

(13) Let \(T \) be a linear operator on the finite dimensional vector space \(V \). Suppose \(T \) has a cyclic vector. Prove that if \(U \) is any linear operator which commutes with \(T \), then \(U \) is a polynomial in \(T \).

Proof. Let \(B = \{\alpha, T\alpha, \ldots, T^{n-1}\alpha\} \) be a basis for \(V \) containing the cyclic vector \(\alpha \) and let \(m(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \) be the minimal polynomial of \(T \). Since \(U\alpha \) is in \(V \), it can be written as a linear combination of basis vectors. Then, \(U\alpha = b_0\alpha + b_1T\alpha + \cdots + b_{n-1}T^{n-1}\alpha \) where \(b_0, b_1, \ldots, b_{n-1} \) are elements of the field \(\mathbb{F} \). That is, \((b_0I + b_1T + \cdots + b_{n-1}T^{n-1} - U)\alpha = 0 \). Now, since \(U \) and \(T \) commute, we have

\[
UT(\alpha) = TU(\alpha) = T(b_0\alpha + b_1T\alpha + \cdots + b_{n-1}T^{n-1}\alpha) = b_0T\alpha + b_1T^2\alpha + \cdots + b_{n-1}T^n\alpha = (b_0I + b_1T + \cdots + b_{n-1}T^{n-1})T\alpha
\]
which means that
\[(b_0I + b_1T + \cdots + b_{n-1}T^{n-1} - U)T\alpha = 0.\]

Similarly, we can show that \((b_0I + b_1T + \cdots + b_{n-1}T^{n-1} - U)T^i\alpha = 0\) for all \(i = 2, 3, \ldots, n-1\). Since the transformation \(b_0I + b_1T + \cdots + b_{n-1}T^{n-1} - U\) maps each basis vector to the zero vector, it is identically equal to zero on the whole space. Thus, we obtain

\[U = b_0I + b_1T + \cdots + b_{n-1}T^{n-1}.\]

(14) Give an example of two 4 \(\times\) 4 nilpotent matrices which have the same minimal polynomial but which are not similar.

Solution. Let \(A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\) and \(B = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\).

It is easy to see that \(m_A(x) = m_B(x) = x^2\) but they are not similar since, \(A\) has 3 distinct characteristic vectors corresponding to the characteristic value zero, but \(B\) has only two characteristic vectors corresponding to the characteristic value zero.

(15) Show that if \(N\) is a nilpotent linear operator on an \(n\)–dimensional vector space \(V\), then the characteristic polynomial for \(N\) is \(x^n\).

Solution. Recall that \(N\) is nilpotent, if \(N^k = 0\) for some \(k \in \mathbb{N}^+\). Since, \(N\) is a nilpotent linear operator on \(V\), the minimal polynomial for \(N\) is of the form \(x^m\) for some \(m \leq n\). Then, all characteristic values of \(N\) are zero. Since the minimal polynomial is a product of linear polynomials, \(N\) is a triangulable operator. It follows that there exists a basis \(\mathcal{B}\) of
V such that

$$[N]_B = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ * & 0 & \cdots & 0 \\ * & * & \cdots & \vdots \\ * & * & \cdots & 0 \end{bmatrix}.$$

since, similar matrices have the characteristic polynomial, it follows that the characteristic polynomial of N is x^n where $n = \dim V$.

(16) Let T be a linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Prove that T has no cyclic vector. What is the T cyclic subspace generated by the vector $\beta = (1, -1, 3)$?

Solution. Assume that T has a cyclic vector $\alpha = (a_1, a_2, a_3)$. Then $B = \{\alpha, T\alpha, T^2\alpha\}$ will be a basis for \mathbb{R}^3. That is, the vectors $\alpha = (a_1, a_2, a_3), T\alpha = (2a_1, 2a_2, -a_3), T^2\alpha = (4a_1, 4a_2, a_3)$ must be linearly independent, or the matrix

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ 2a_1 & 2a_2 & -a_3 \\ 4a_1 & 4a_2 & a_3 \end{bmatrix}$$

must be invertible. Applying elementary row operations, we obtain

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ 2a_1 & 2a_2 & -a_3 \\ 4a_1 & 4a_2 & a_3 \end{bmatrix} \rightarrow \begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & 0 & -3a_3 \\ 0 & 0 & -3a_3 \end{bmatrix} \rightarrow \begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & 0 & a_3 \\ 0 & 0 & 0 \end{bmatrix}$$

which is not invertible. Hence, T has no cyclic vector.

To find the cyclic subspace generated by β, it is enough to check if β and $T\beta$ are independent since we have already shown that the set $\{\alpha, T\alpha, T^2\alpha\}$ can not be linearly independent for any $\alpha \in \mathbb{R}^3$. Clearly, $\beta = (1, -1, 3)$ and $T\beta = (2, -2, -3)$ are
linearly independent since, otherwise, one of them would be a multiple of the other one which is not the case here. Thus, the cyclic subspace generated by β is

$$Z(\beta; T) = \langle (1, -1, 3), (2, -2, -3) \rangle = \{ \lambda(1, -1, 3) + \mu(2, -2, -3) : \lambda, \mu \in \mathbb{R} \}.$$

(17) Find the minimal polynomial and rational form of the matrix

$$T = \begin{bmatrix} c & 0 & -1 \\ 0 & c & 1 \\ -1 & 1 & c \end{bmatrix}.$$

Solution. The characteristic polynomial of T is

$$f_T(x) = \det(xI - T) = \begin{vmatrix} x - c & 0 & 1 \\ 0 & x - c & -1 \\ 1 & -1 & x - c \end{vmatrix}$$

$$= (x - c)(x - c)(x - c - 1) - (x - c)$$

$$= (x - c)(x - c - 2)$$

$$= (x - c)(x - c - \sqrt{2})(x - c + \sqrt{2}).$$

Since the characteristic polynomial and the minimal polynomial have the same roots and the minimal polynomial divides the characteristic polynomial we have $m_T(x) = f_T(x) = (x - c)(x - c - 2) = (x - c)^3 - 2(x - c) = x^3 + (-3c)x^2 + (3c^2 - 2)x + (-c^3 + 2c).$ Thus the rational form of T is

$$R = \begin{bmatrix} 0 & 0 & c^3 - 2c \\ 1 & 0 & -3c^2 + 2 \\ 0 & 1 & 3c \end{bmatrix}.$$