EXERCISES AND SOLUTIONS IN LINEAR ALGEBRA

Mahmut Kuzucuoğlu Middle East Technical University matmah@metu.edu.tr Ankara, TURKEY March 14, 2015

TABLE OF CONTENTS

Preface

I have given some linear algebra courses in various years. These problems are given to students from the books which I have followed that year. I have kept the solutions of exercises which I solved for the students. These notes are collection of those solutions of exercises.

> Mahmut Kuzucuoğlu METU, Ankara March 14, 2015

M. Kuzucuoğlu

Math 262 Quiz I (05.03.2008)

Name : Answer Key ID Number : 2360262 Signature : 0000000 Duration : 60 minutes

Show all your work. Unsupported answers will not be graded.

1.) Let
$$
A = \begin{bmatrix} 2 & 4 & -2 \\ 0 & -4 & 3 \\ -3 & -7 & 4 \end{bmatrix}
$$
.

(a) Find the characteristic polynomial of A .

Solution. The characteristic polynomial of A is $f(x) = \det(xI - A)$. So,

$$
f(x) = \begin{vmatrix} x-2 & -4 & 2 \\ 0 & x+4 & -3 \\ 3 & 7 & x-4 \end{vmatrix}
$$

= $(x-2)\begin{vmatrix} x+4 & -3 \\ 7 & x-4 \end{vmatrix} + 3\begin{vmatrix} -4 & 2 \\ x+4 & -3 \end{vmatrix}$
= $(x-2)(x^2-16+21)+3(12-2x-8)$
= $(x-2)(x^2+5)+3(4-2x)$
= $(x-2)(x^2+5-6)$
= $(x-2)(x-1)(x+1)$

(b) Find the minimal polynomial of A .

Solution. We know that the minimal polynomial divides the characteristic polynomial and they same the same roots. Thus, the minimal polynomial for A is $m_A(x) = f(x) = (x - 2)(x - 1)(x + 1)$.

(c) Find the characteristic vectors and a basis $\mathcal B$ such that $[A]_\mathcal B$ is diagonal.

Solution. The characteristic values of A are $c_1 = 2, c_2 = 1, c_3 = -1$.

$$
A - 2I = \begin{bmatrix} 0 & 4 & -2 \\ 0 & -6 & 3 \\ -3 & -7 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} -3 & -7 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad -3x - 7y + 2z = 0 \Rightarrow z = 2y
$$

$$
2y - z = 0 \Rightarrow x = -y
$$

Thus, $\alpha_1 = (-1, 1, 2)$ is a characteristic vector associated with the characteristic value $c_1 = 2$.

$$
A - I = \begin{bmatrix} 1 & 4 & -2 \\ 0 & -5 & 3 \\ -3 & -7 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 4 & -2 \\ 0 & -5 & 3 \\ 0 & 0 & 0 \end{bmatrix}, \quad x + 4y - 2z = 0 \Rightarrow \begin{aligned} y &= 3k \\ z &= 5k \\ x &= -2k \end{aligned}
$$

Thus, $\alpha_2 = (-2, 3, 5)$ is a characteristic vector associated with the characteristic value $c_2 = 1$.

$$
A + I = \begin{bmatrix} 3 & 4 & -2 \\ 0 & -3 & 3 \\ -3 & -7 & 5 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 4 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad 3x + 4y - 2z = 0 \Rightarrow \begin{aligned} x &= -2t \\ y - z &= 0 \end{aligned} \Rightarrow \begin{aligned} x &= -2t \\ y &= 3t \\ z &= 3t \end{aligned}
$$

Thus, $\alpha_3 = (-2, 3, 3)$ is a characteristic vector associated with the characteristic value $c_3 = -1$.

Now, $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ is a basis and $[A]_\mathcal{B} =$ $\sqrt{ }$ \vert 2 0 0 0 1 0 $0 \t 0 \t -1$ 1 is a diagonal matrix.

(d) Find A -conductor of the vector $\alpha = (1, 1, 1)$ into the invariant subspace spanned by $(-1, 1, 2)$.

Solution. Set $W = <(-1, 1, 2)$ and denote the A-conductor of α into W by $g(x)$. Since $m_A(A) = 0$ we have $m_A(A)\alpha \in W$. Thus, $g(x)$ divides $m_A(x)$. Hence, the possibilities for $g(x)$ are $x - 2$, $x - 1$, $x + 1$, $(x - 2)(x - 1)$, $(x - 2)(x + 1)$, $(x - 1)(x + 1)$. We will try these polynomials. (Actually, the answer could be given directly.) Now,

$$
(A-2I)\alpha = \begin{bmatrix} 0 & 4 & -2 \\ 0 & -6 & 3 \\ -3 & -7 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ -8 \end{bmatrix} \notin W \Rightarrow g(x) \neq x - 2,
$$

\n
$$
(A-I)\alpha = \begin{bmatrix} 1 & 4 & -2 \\ 0 & -5 & 3 \\ -3 & -7 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -7 \end{bmatrix} \notin W \Rightarrow g(x) \neq x - 1,
$$

\n
$$
(A+I)\alpha = \begin{bmatrix} 3 & 4 & -2 \\ 0 & -3 & 3 \\ -3 & -7 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ -5 \end{bmatrix} \notin W \Rightarrow g(x) \neq x + 1,
$$

\n
$$
(A-2I)(A-I)\alpha = \begin{bmatrix} 0 & 4 & -2 \\ 0 & -6 & 3 \\ -3 & -7 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \\ -7 \end{bmatrix} = \begin{bmatrix} 6 \\ -9 \\ -9 \end{bmatrix} \notin W \Rightarrow g(x) \neq (x - 2)(x - 1),
$$

\n
$$
(A-2I)(A+I)\alpha = \begin{bmatrix} 0 & 4 & -2 \\ 0 & -6 & 3 \\ -3 & -7 & 2 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} 10 \\ -15 \\ -25 \end{bmatrix} \notin W \Rightarrow g(x) \neq (x - 2)(x + 1),
$$

\n
$$
(A-I)(A+I)\alpha = \begin{bmatrix} 1 & 4 & -2 \\ 0 & -5 & 3 \\ -3 & -7 & 3 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} 15 \\ -15 \\ -30 \end{bmatrix} = -15\alpha_1 \in W \Rightarrow g(x) = x^2 - 1.
$$

 $\bf 2.)$ Find a $\bf 3 \times 3$ matrix whose minimal polynomial is $\it x^2.$

Solution. For the matrix $A =$ $\sqrt{ }$ \vert 0 0 1 0 0 0 0 0 0 1 \vert we have $A\neq 0$ and $A^2=0.$ Thus, A is a 3×3 matrix whose minimal polynomial is $\,x^2$.

3.) Prove that similar matrices have the same minimal polynomial.

Solution. Let A and B be similar matrices, i.e., $B = P^{-1}AP$ for some invertible matrix P . For any $k\,>\,0$ we have $\,B^{k}\,=\,(P^{-1}AP)^k\,=\,P^{-1}A^kP\,$ which implies that $\,f(B)\,=\,P^{-1}f(A)P\,$ for any polynomial $f(x)$. Let f_A and f_B be the minimal polynomials of A and B, respectively. Then $f_A(B)$ = $P^{-1}f_A(A)P = P^{-1}OP = O$ implies that f_B divides f_A . On the other hand, $O = f_B(B) = P^{-1}f_B(A)P$ gives us $f_B(A) = O$. Hence, f_A divides f_B . Therefore, we have $f_A = f_B$.

2 M. KUZUCUOĞLU

1. Math 262 Exercises and Solutions

(1) Let *A* be a 3×3 matrix with real entries. Prove that if *A* is not similar over $\mathbb R$ to a triangular matrix then A is similar over C to a diagonal matrix.

Proof. Since A is a 3×3 matrix with real entries, the characteristic polynomial, $f(x)$, of A is a polynomial of degree 3 with real coefficients. We know that every polynomial of degree 3 with real coefficients has a real root, say *c*1*.*

On the other hand, since A is not similar over $\mathbb R$ to a triangular matrix, the minimal polynomial of *A* is not product of polynomials of degree one. So one of the irreducible factor, *h,* of the minimal polynomial of *A* is degree 2*.* Then *h* has two complex roots, one of which is the conjugate of the other. Thus, the characteristic polynomial has one real root and two complex roots, c_1 , λ and $\overline{\lambda}$.

The minimal polynomial over complex numbers is (*x −* $c_1(x - \lambda)(x - \overline{\lambda})$ which implies that *A* is diagonalizable over complex numbers.

(2) Let *T* be a linear operator on a finite dimensional vector space over an algebraically closed field F*.* Let *f* be a polynomial over **F**. Prove that *c* is a characteristic value of $f(T)$ if and only if $f(t) = c$ where *t* is a characteristic value of *T*.

Proof. Let *t* be a characteristic value of *T* and β be a nonzero characteristic vector associated with the characteristic value *t*. Then, $T\beta = t\beta$, $T^2\beta = T(T\beta) = T(t\beta) = tT\beta = t^2\beta$, and inductively we can see that $T^k\beta = t^k\beta$ for any $k \geq 1$. Thus, for any polynomial $f(x)$ we have $f(T)\beta = f(t)\beta$ which means, since $\beta \neq 0$, that $f(t)$ is a characteristic value of the linear operator $f(T)$.

Assume that *c* is a characteristic value of $f(T)$. Since $\mathbb F$ is algebraically closed, the minimal polynomial of *T* is product of linear polynomials, that is, *T* is similar to a triangular operator. If $[P^{-1}TP]_B$ is triangular matrix, then $[P^{-1}f(T)P]_B$ is

also triangular and on the diagonal of $[P^{-1}f(T)P]$ _{*B*} we have $f(c_i)$, where c_i is a characteristic value of *T*.

(3) Let *c* be a characteristic value of *T* and let *W* be the space of characteristic vectors associated with the characteristic value *c*. What is the restriction operator $T|_W$.

Solution. Every vector $v \in W$ is a characteristic vector. Hence, $Tv = cv$ for all $v \in W$. Therefore, $T|_W = cI$.

(4) Every matrix *A* satisfying $A^2 = A$ is similar to a diagonal matrix.

Solution. A satisfies the polynomial $x^2 - x$. Thus, the minimal polynomial, $m_A(x)$, of *A* divides $x^2 - x$, that is $m_A(x) = x$ or $m_A(x) = x - 1$ or $m_A(x) = x(x - 1)$.

If $m_A(x) = x$, then $A = 0$.

If $m_A(x) = x - 1$, then $A = I$.

If $m_A(x) = x(x-1)$, then the minimal polynomial of *A* is product of distinct polynomials of degree one. Thus, by a Theorem, the matrix *A* is similar to diagonal matrix with diagonal entries consisting of the characteristic values, 0 and 1*.*

(5) Let *T* be a linear operator on *V.* If every subspace of *V* is invariant under *T* then it is a scalar multiple of the identity operator.

Solution. If dim $V = 1$ then for any $0 \neq v \in V$, we have $Tv = cv$, since *V* is invariant under *T*. Hence, $T = cI$.

Assume that dim $V > 1$ and let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be a basis for *V*. Since $W_1 = \langle v_1 \rangle$ is invariant under *T*, we have $Tv_1 = c_1v_1$. Similarly, since $W_2 = \langle v_2 \rangle$ is invariant under *T*, we have $Tv_2 = c_2v_2$. Now, $W_3 = \langle v_1 + v_2 \rangle$ is also invariant under *T*. Hence, $T(v_1 + v_2) = \lambda(v_1 + v_2)$ or $c_1v_1 + c_2v_2 = \lambda(v_1 + v_2)$, which gives us $(c_1 - \lambda)v_1 + (c_2 - \lambda)v_2 = 0$. However, v_1 and v_2 are linearly independent and hence we should have $c_1 = c_2 = \lambda$. Similarly, one can continue with the subspace $\langle v_1 + v_2 + v_3 \rangle$

4 M. KUZUCUOĞLU

and observe that $T(v_3) = \lambda v_3$. So for any $v_i \in \mathcal{B}$, we have $Tv_i = \lambda v_i$. Thus, $T = \lambda I$.

(6) Let *V* be the vector space of $n \times n$ matrices over **F**. Let *A* be a fixed $n \times n$ matrix. Let *T* be a linear operator on *V* defined by $T(B) = AB$. Show that the minimal polynomial of *T* is the minimal polynomial of *A.*

Solution. Let $m_A(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be the minimal polynomial of *A*, so that $m_A(A) = 0$. It is easy to see that $T^k(B) = A^kB$ for any $k \geq 1$. Then, for any $B \in V$ we have

$$
m_A(T)B = (T^n + a_{n-1}T^{n-1} + \dots + a_1T + a_0I)B
$$

= $T^n(B) + a_{n-1}T^{n-1}(B) + \dots + a_1T(B) + a_0B$
= $A^nB + a_{n-1}A^{n-1}B + \dots + a_1AB + a_0B$
= $(A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0I)B$
= $m_A(A)B = 0.$

Thus, we obtain $m_A(T) = 0$, which means that $m_T(x)$ divides $m_A(x)$.

Now, let $m_T(x) = x^m + c_{m-1}x^{m-1} + \cdots + c_1x + c_0$ be the minimal polynomial of *T*, so that $m_T(T) = 0$. Then, for any $B \in V$ we have

$$
m_T(A)B = (Am + cm-1Am-1 + \dots + c1A + c0I)B
$$

= $AmB + cm-1Am-1B + \dots + c1AB + c0B$
= $Tm(B) + cm-1Tm-1(B) + \dots + c1T(B) + c0B$
= $(Tm + cm-1Tm-1 + \dots + c1T + c0I)B$
= $m_T(T)B = 0$,

which leads to $m_T(A) = 0$, meaning that $m_A(x)$ divides $m_T(x)$. Since, monic polynomials dividing each other are the same we have $m_T(x) = m_A(x)$.

(7) If *E* is a projection and *f* is a polynomial, then show that $f(E) = aI + bE$. What are *a* and *b* in terms of the coefficients of *f*?

Solution. Let $f(x) = c_0 + c_1 x + \cdots + c_n x^n$. Then, $f(E) =$ $c_0I + c_1E + \cdots + c_nE^n$. Since *E* is a projection, $(E^2 = E)$, we have $E^k = E$ for any $k \geq 1$. Then,

$$
f(E) = c_0 I + c_1 E + \dots + c_n E^n
$$

= $c_0 I + c_1 E + \dots + c_n E$
= $c_0 I + (c_1 + \dots + c_n) E$.

Thus, *a* is the constant term of *f* and *b* is the sum of all other coefficients.

(8) Let *V* be a finite dimensional vector space and let W_1 be any subspace of *V*. Prove that there is a subspace W_2 of *V* such that $V = W_1 \oplus W_2$.

Proof. Let $\mathcal{B}_{W_1} = \{\beta_1, \cdots, \beta_k\}$ be a basis for W_1 . We may \mathcal{B}_W to a basis \mathcal{B}_V of V , say $\mathcal{B}_V = {\beta_1, \cdots, \beta_k, \beta_{k+1}, \cdots, \beta_n}.$ Let W_2 be the subspace spanned by $\beta_{k+1}, \dots, \beta_n$. Then, as they are linearly independent in *V*, we have $\mathcal{B}_{W_2} = {\beta_{k+1}, \cdots, \beta_n}$. Clearly $W_1 + W_2 = V$ as $W_1 + W_2$ contains a basis of *V* and so spans *V*. Let $\beta \in W_1 \cap W_2$. Then, $\beta \in W_1$ implies that $\beta = c_1\beta_1 + \cdots + c_k\beta_k$, and $\beta \in W_2$ implies that $\beta =$ $c_{k+1}\beta_{k+1} + \cdots + c_n\beta_n$. The last two equalities give us $c_1\beta_1 + c_2\beta_2$ $\cdots + c_k \beta_k - c_{k+1} \beta_{k+1} - \cdots + c_n \beta_n = 0$, but since β_i 's are linearly independent, we obtain $c_i = 0$ for all $i = 1, \dots, n$ which means that $\beta = 0$. That is $W_1 \cap W_2 = \{0\}$, and hence $V = W_1 \oplus W_2$.

(9) Let *V* be a real vector space and *E* be an idempotent linear operator on *V*, that is a projection. Prove that $I + E$ is invertible. Find $(I + E)^{-1}$.

Proof. Since *E* is an idempotent linear operator it is diagonalizable by Question 4. So there exists a basis of *V* consisting of characteristics vectors of *E* corresponding to the characteristic values 0 and 1*.* That is, there exists a basis

6 M. KUZUCUOĞLU

 $\mathcal{B} = \{\beta_1, \cdots, \beta_n\}$ such that $E\beta_i = \beta_i$ for $i = 1, \cdots, k$, and $E\beta_i = 0$ for $i = k + 1, \cdots, n$. Then $(I + E)\beta_i = 2\beta_i$ for $i = 1, \dots, k$ and $(I + E)\beta_i = \beta_i$ for $i = k + 1, \dots, n$, that is,

$$
[I+E]_{\mathcal{B}} = \left[\begin{array}{cc} 2I_1 & 0 \\ 0 & I_2 \end{array} \right],
$$

where I_1 stands for $k \times k$ identity matrix, I_2 is $(n - k) \times (n - k)$ *k*) identity matrix and each 0 represents the zero matrix of appropriate dimension. It is now easy to see that $[I + E]_B$ is invertible, since $\det(I + E) = 2^k \neq 0$.

To find the inverse of $(I + E)$, we note that

$$
([I+E]_{\mathcal{B}})^{-1} = \begin{bmatrix} \frac{1}{2}I_1 & 0 \\ 0 & I_2 \end{bmatrix} = \begin{bmatrix} I_1 & 0 \\ 0 & I_2 \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}I_1 & 0 \\ 0 & 0 \end{bmatrix} = I - \frac{1}{2}[E]_{\mathcal{B}}.
$$

Therefore, $(I + E)^{-1} = I - \frac{1}{2}E$. (You may verify that really this is the inverse, by showing that $(I + E)(I - \frac{1}{2}E) = (I (\frac{1}{2}E)(I+E) = I.$

(10) Let *T* be a linear operator on *V* which commutes with every projection operator on *V.* What can you say about *T*?

Solution. Let *B* be a basis for *V* and $\beta_i \in \mathcal{B}, i \in I$ where *I* is some index set. We can write *V* as a direct sum $V =$ $W_i \oplus U$ where $W_i = \langle \beta_i \rangle$. Then there exists a projection E_i of *V* onto the subspace W_i for each $i \in I$. Note that $E_i v \in W_i$ for all $v \in V$, and $E_i \beta_i = \beta_i$. Now, by assumption, the linear operator *T* commutes with E_i for all $i \in I$, that is, $TE_i = E_iT$. Then, for $\beta_i \in W_i$, we have $TE_i \beta_i = E_i T \beta_i \in W_i$ implies that $T\beta_i = T(E_i\beta_i) = c_i\beta_i$ for some constant $c_i \in \mathbb{F}$. Thus, β_i is a characteristic vector of *T.* Hence, *V* has a basis consisting of characteristic vectors of *T.* It follows that *T* is a diagonalizable linear operator on *V.*

(11) Let *V* be the vector space of continuous real valued functions on the interval $[-1, 1]$ of the real line. Let W_e be the space of even functions, $f(-x) = f(x)$, and W_o be the space of odd functions, $f(-x) = -f(x)$.

a) Show that $V = W_e \oplus W_o$.

b) If *T* is the indefinite integral operator $(Tf)(x) = \int_0^x$ 0 *f*(*t*)*dt,* are *W^e* and *W^o* invariant under *T*?

Solution. a) Let $f \in V$. Then, we may write

$$
f(x) = \frac{f(x) + f(-x) + f(x) - f(-x)}{2} = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}.
$$

Observe that $f_e(x) = \frac{f(x) + f(-x)}{2}$ is a continuous even function and $f_o(x) = \frac{f(x) - f(-x)}{2}$ is a continuous odd function. Hence, $f = f_e + f_o$, that is $V = W_e + W_o$. To show that $V = W_e \oplus W_o$, we need to show that $W_e \cap W_o = \{0\}$. To see this, let $g \in W_e \cap W_o$. Then, $g \in W_e$ implies that $g(-x) = g(x)$, and $g \in W_o$ implies that $g(-x) = -g(x)$. Thus, we have $g(x) = -g(x)$ or $g(x) = 0$ for all $x \in [-1, 1]$, which means that $q = 0$.

b) For $f(x) = x \in W_o$, we have $(Tf)(x) = x^2/2 \notin W_o$, and for $g(x) = x^2 \in W_e$, we have $(Tg)(x) = x^3/3 \notin W_e$. Thus, neither W_e nor W_o are invariant under T .

(12) Let *V* be a finite dimensional vector space over the field F*,* and let *T* be a linear operator on *V*, such that $rank(T) = 1$. Prove that either *T* is diagonalizable or *T* is nilpotent, but not both.

Proof. Since $rank(T) = dim(Im(T)) = 1$, we have $dim(Ker(T)) = 1$ $n-1$ *.* Let $0 \neq \beta \in Im(T)$ *.* So, $Im(T) = \langle \beta \rangle$ *.* Since $\beta \in$ *Im*(*T*), there exists a vector $\alpha_0 \in V$ such that $T\alpha_0 = \beta$. Let $\{\alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}\$ be a basis for $Ker(T)$. Then, $\mathcal{B} =$ $\{\alpha_0, \alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}\$ is a basis for *V*.

We have $T\alpha_i = 0$ for all $i = 1, 2, \dots, n-1$.

If $T\alpha_0 \in \text{Ker}(T)$, then $T\alpha_0 = c_1\alpha_1 + \cdots + c_{n-1}\alpha_{n-1}$ and

$$
[T]_{\mathcal{B}} = \left[\begin{array}{ccccc} 0 & 0 & 0 & \cdots & 0 \\ c_1 & 0 & 0 & \cdots & 0 \\ c_2 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{n-1} & 0 & 0 & \cdots & \vdots \end{array} \right]
$$

and it is easily seen that $T^2 = 0$ meaning that *T* is nilpotent. Note that at least one of c_i 's is nonzero, since otherwise, α_0 would be in $Ker(T)$ which contradicts with the choice of \mathcal{B} *.*

If $T\alpha_0 \notin Ker(T)$, then $T\beta \in Im(T)$ and $T\beta = c_0\beta$. In this case we construct a new basis $\mathcal{B}' = \{\beta, \alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}\$ and

$$
[T]_{\mathcal{B}'} = \left[\begin{array}{cccc} c_0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right]
$$

which means that *T* is diagonalizable.

(13) Let *T* be a linear operator on the finite dimensional vector space *V.* Suppose *T* has a cyclic vector. Prove that if *U* is any linear operator which commutes with *T*, then *U* is a polynomial in *T.*

Proof. Let $\mathcal{B} = \{ \alpha, T\alpha, \dots, T^{n-1}\alpha \}$ be a basis for *V* containing the cyclic vector α and let $m(x) = x^n + a_{n-1}x^{n-1} +$ $\cdots + a_1x + a_0$ be the minimal polynomial of *T*. Since $U\alpha$ is in *V,* it can be written as a linear combination of basis vectors. Then, $U\alpha = b_0\alpha + b_1T\alpha + \cdots + b_{n-1}T^{n-1}\alpha$ where $b_0, b_1, \cdots, b_{n-1}$ are elements of the field \mathbb{F} . That is, $(b_0I+b_1T+\cdots+b_{n-1}T^{n-1} U$) $\alpha = 0$. Now, since *U* and *T* commute, we have

$$
UT(\alpha) = TU(\alpha) = T(b_0\alpha + b_1T\alpha + \dots + b_{n-1}T^{n-1}\alpha)
$$

= $b_0T\alpha + b_1T^2\alpha + \dots + b_{n-1}T^n\alpha$
= $(b_0I + b_1T + \dots + b_{n-1}T^{n-1})T\alpha$

which means that

$$
(b_0I + b_1T + \dots + b_{n-1}T^{n-1} - U)T\alpha = 0.
$$

Similarly, we can show that $(b_0I + b_1T + \cdots + b_{n-1}T^{n-1} U$ ^{*T*}^{*i*} α = 0 for all *i* = 2*,* 3*,* · · · *, n* − 1*.* Since the transformation $b_0I + b_1T + \cdots + b_{n-1}T^{n-1} - U$ maps each basis vector to the zero vector, it is identically equal to zero on the whole space. Thus, we obtain

$$
U = b_0 I + b_1 T + \dots + b_{n-1} T^{n-1}.
$$

(14) Give an example of two 4×4 nilpotent matrices which have the same minimal polynomial but which are not similar.

It is easy to see that $m_A(x) = m_B(x) = x^2$ but they are not similar since, *A* has 3 distinct characteristic vectors corresponding to the characteristic value zero, but *B* has only two characteristic vectors corresponding to the characteristic value zero.

(15) Show that if *N* is a nilpotent linear operator on an *n−*dimensional vector space *V*, then the characteristic polynomial for N is x^n . **Solution.** Recall that *N* is nilpotent, if $N^k = 0$ for some $k \in \mathbb{N}^+$. Since, *N* is a nilpotent linear operator on *V*, the minimal polynomial for *N* is of the form x^m for some $m \leq$ *n.* Then, all characteristic values of *N* are zero. Since the minimal polynomial is a product of linear polynomials, *N* is a triangulable operator. It follows that there exists a basis *B* of

.

V such that

$$
[N]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \star & 0 & \cdots & 0 \\ \star & \star & \ddots & \vdots \\ \star & \star & \cdots & 0 \end{bmatrix}.
$$

since, similar matrices have the characteristic polynomial, it follows that the characteristic polynomial of N is x^n where $n = dimV$.

(16) Let *T* be a linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix

$$
\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{array}\right].
$$

Prove that *T* has no cyclic vector. What is the *T* cyclic subspace generated by the vector $\beta = (1, -1, 3)$?

Solution. Assume that T has a cyclic vector $\alpha = (a_1, a_2, a_3)$. Then $\mathcal{B} = {\alpha, T\alpha, T^2\alpha}$ will be a basis for \mathbb{R}^3 . That is, the vec- $\text{tors } \alpha = (a_1, a_2, a_3), T\alpha = (2a_1, 2a_2, -a_3), T^2\alpha = (4a_1, 4a_2, a_3)$ must be linearly independent, or the matrix

$$
\left[\begin{array}{ccc} a_1 & a_2 & a_3 \\ 2a_1 & 2a_2 & -a_3 \\ 4a_1 & 4a_2 & a_3 \end{array}\right]
$$

must be invertible. Applying elementary row operations, we obtain

$$
\begin{bmatrix} a_1 & a_2 & a_3 \ 2a_1 & 2a_2 & -a_3 \ 4a_1 & 4a_2 & a_3 \end{bmatrix} \xrightarrow{-2R_1 + R_2} \begin{bmatrix} a_1 & a_2 & a_3 \ 0 & 0 & -3a_3 \ 0 & 0 & -3a_3 \end{bmatrix} \xrightarrow{-2R_2 + R_3} \begin{bmatrix} a_1 & a_2 & a_3 \ 0 & 0 & a_3 \ 0 & 0 & 0 \end{bmatrix}
$$

which is not invertible. Hence, *T* has no cyclic vector.

To find the cyclic subspace generated by *β,* it is enough to check if β and $T\beta$ are independent since we have already shown that the set $\{\alpha, T\alpha, T^2\alpha\}$ can not be linearly independent for any $\alpha \in \mathbb{R}^3$. Clearly, $\beta = (1, -1, 3)$ and $T\beta = (2, -2, -3)$ are

linearly independent since, otherwise, one of them would be a multiple of the other one which is not the case here. Thus, the cyclic subspace generated by *β* is

 $Z(\beta;T) = \langle (1,-1,3), (2,-2,-3) \rangle = \{ \lambda(1,-1,3) + \mu(2,-2,-3) : \lambda, \mu \in \mathbb{R} \}.$

(17) Find the minimal polynomial and rational form of the matrix

$$
T = \left[\begin{array}{rrr} c & 0 & -1 \\ 0 & c & 1 \\ -1 & 1 & c \end{array} \right].
$$

Solution. The characteristic polynomial of *T* is

$$
f_T(x) = \det(xI - T) = \begin{vmatrix} x - c & 0 & 1 \\ 0 & x - c & -1 \\ 1 & -1 & x - c \end{vmatrix}
$$

= $(x - c) \begin{vmatrix} x - c & -1 \\ -1 & x - c \end{vmatrix} + \begin{vmatrix} 0 & 1 \\ x - c & -1 \end{vmatrix}$
= $(x - c)((x - c)^2 - 1) - (x - c)$
= $(x - c)((x - c)^2 - 2)$
= $(x - c)(x - c - \sqrt{2})(x - c + \sqrt{2}).$

Since the characteristic polynomial and the minimal polynomial have the same roots and the minimal polynomial divides the characteristic polynomial we have $m_T(x) = f_T(x)$ $(x - c)((x - c)^2 - 2) = (x - c)^3 - 2(x - c) = x^3 + (-3c)x^2 +$ $(3c² - 2)x + (-c³ + 2c)$. Thus the rational form of *T* is

$$
R = \left[\begin{array}{rrr} 0 & 0 & c^3 - 2c \\ 1 & 0 & -3c^2 + 2 \\ 0 & 1 & 3c \end{array} \right].
$$