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Preface

I have given some linear algebra courses in various years. These

problems are given to students from the books which I have followed

that year. I have kept the solutions of exercises which I solved for the

students. These notes are collection of those solutions of exercises.

Mahmut Kuzucuoğlu

METU, Ankara

March 14, 2015

M. Kuzucuoğlu
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DEPARTMENT OF MATHEMATICS

Math 262 Quiz I

Name : Answer Key
ID Number : 2360262
Signature : 0000000
Duration : 60 minutes

(05.03.2008)

Show all your work. Unsupported answers will not be graded.

1.) Let A =

 2 4 −2
0 −4 3

−3 −7 4

 .

(a) Find the characteristic polynomial of A.

Solution. The characteristic polynomial of A is f(x) = det(xI −A). So,

f(x) =

∣∣∣∣∣∣∣
x− 2 −4 2

0 x + 4 −3
3 7 x− 4

∣∣∣∣∣∣∣
= (x− 2)

∣∣∣∣∣ x + 4 −3
7 x− 4

∣∣∣∣∣ + 3

∣∣∣∣∣ −4 2
x + 4 −3

∣∣∣∣∣
= (x− 2)(x2 − 16 + 21) + 3(12− 2x− 8)

= (x− 2)(x2 + 5) + 3(4− 2x)

= (x− 2)(x2 + 5− 6)

= (x− 2)(x− 1)(x + 1)

(b) Find the minimal polynomial of A.

Solution. We know that the minimal polynomial divides the characteristic polynomial and they same

the same roots. Thus, the minimal polynomial for A is mA(x) = f(x) = (x− 2)(x− 1)(x + 1).

(c) Find the characteristic vectors and a basis B such that [A]B is diagonal.

Solution. The characteristic values of A are c1 = 2, c2 = 1, c3 = −1.

A− 2I =

 0 4 −2
0 −6 3

−3 −7 2

 −→

 −3 −7 2
0 2 −1
0 0 0

 ,
−3x− 7y + 2z = 0

2y − z = 0
⇒

z = 2y

x = −y

Thus, α1 = (−1, 1, 2) is a characteristic vector associated with the characteristic value c1 = 2.

A− I =

 1 4 −2
0 −5 3

−3 −7 3

 −→

 1 4 −2
0 −5 3
0 0 0

 ,
x + 4y − 2z = 0
−5y + 3z = 0

⇒
y = 3k

z = 5k

x = −2k

Thus, α2 = (−2, 3, 5) is a characteristic vector associated with the characteristic value c2 = 1.

A + I =

 3 4 −2
0 −3 3

−3 −7 5

 −→

 3 4 −2
0 1 −1
0 0 0

 ,
3x + 4y − 2z = 0

y − z = 0
⇒

x = −2t

y = 3t

z = 3t



Thus, α3 = (−2, 3, 3) is a characteristic vector associated with the characteristic value c3 = −1.

Now, B = {α1, α2, α3} is a basis and [A]B =

 2 0 0
0 1 0
0 0 −1

 is a diagonal matrix.

(d) Find A -conductor of the vector α = (1, 1, 1) into the invariant subspace spanned by (−1, 1, 2).

Solution. Set W =< (−1, 1, 2) > and denote the A -conductor of α into W by g(x). Since

mA(A) = 0 we have mA(A)α ∈ W. Thus, g(x) divides mA(x). Hence, the possibilities for g(x)
are x− 2, x− 1, x + 1, (x− 2)(x− 1), (x− 2)(x + 1), (x− 1)(x + 1). We will try these polynomials.

(Actually, the answer could be given directly.) Now,

(A− 2I)α =

 0 4 −2
0 −6 3

−3 −7 2

 ·
 1

1
1

 =

 2
−3
−8

 /∈ W ⇒ g(x) 6= x− 2,

(A− I)α =

 1 4 −2
0 −5 3

−3 −7 3

 ·
 1

1
1

 =

 3
−2
−7

 /∈ W ⇒ g(x) 6= x− 1,

(A + I)α =

 3 4 −2
0 −3 3

−3 −7 5

 ·
 1

1
1

 =

 5
0

−5

 /∈ W ⇒ g(x) 6= x + 1,

(A− 2I)(A− I)α =

 0 4 −2
0 −6 3

−3 −7 2

 ·
 3
−2
−7

 =

 6
−9
−9

 /∈ W ⇒ g(x) 6= (x− 2)(x− 1),

(A− 2I)(A + I)α =

 0 4 −2
0 −6 3

−3 −7 2

 ·
 5

0
−5

 =

 10
−15
−25

 /∈ W ⇒ g(x) 6= (x− 2)(x + 1),

(A− I)(A + I)α =

 1 4 −2
0 −5 3

−3 −7 3

 ·
 5

0
−5

 =

 15
−15
−30

 = −15α1 ∈ W ⇒ g(x) = x2 − 1.

2.) Find a 3× 3 matrix whose minimal polynomial is x2.

Solution. For the matrix A =

 0 0 1
0 0 0
0 0 0

 we have A 6= 0 and A2 = 0. Thus, A is a 3 × 3 matrix

whose minimal polynomial is x2.

3.) Prove that similar matrices have the same minimal polynomial.

Solution. Let A and B be similar matrices, i.e., B = P−1AP for some invertible matrix P. For

any k > 0 we have Bk = (P−1AP )k = P−1AkP which implies that f(B) = P−1f(A)P for any

polynomial f(x). Let fA and fB be the minimal polynomials of A and B, respectively. Then fA(B) =
P−1fA(A)P = P−1OP = O implies that fB divides fA. On the other hand, O = fB(B) = P−1fB(A)P
gives us fB(A) = O. Hence, fA divides fB. Therefore, we have fA = fB.
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1. Math 262 Exercises and Solutions

(1) Let A be a 3 × 3 matrix with real entries. Prove that if A is

not similar over R to a triangular matrix then A is similar over

C to a diagonal matrix.

Proof. Since A is a 3 × 3 matrix with real entries, the

characteristic polynomial, f(x), of A is a polynomial of degree

3 with real coefficients. We know that every polynomial of

degree 3 with real coefficients has a real root, say c1.

On the other hand, since A is not similar over R to a tri-

angular matrix, the minimal polynomial of A is not product

of polynomials of degree one. So one of the irreducible factor,

h, of the minimal polynomial of A is degree 2. Then h has

two complex roots, one of which is the conjugate of the other.

Thus, the characteristic polynomial has one real root and two

complex roots, c1, λ and λ̄.

The minimal polynomial over complex numbers is (x −
c1)(x − λ)(x − λ̄) which implies that A is diagonalizable over

complex numbers.

(2) Let T be a linear operator on a finite dimensional vector space

over an algebraically closed field F. Let f be a polynomial over

F. Prove that c is a characteristic value of f(T ) if and only if

f(t) = c where t is a characteristic value of T.

Proof. Let t be a characteristic value of T and β be a non-

zero characteristic vector associated with the characteristic

value t. Then, Tβ = tβ, T 2β = T (Tβ) = T (tβ) = tTβ = t2β,

and inductively we can see that T kβ = tkβ for any k ≥ 1.

Thus, for any polynomial f(x) we have f(T )β = f(t)β which

means, since β ̸= 0, that f(t) is a characteristic value of the

linear operator f(T ).

Assume that c is a characteristic value of f(T ). Since F is

algebraically closed, the minimal polynomial of T is product

of linear polynomials, that is, T is similar to a triangular op-

erator. If [P−1TP ]B is triangular matrix, then [P−1f(T )P ]B is
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also triangular and on the diagonal of [P−1f(T )P ]B we have

f(ci), where ci is a characteristic value of T.

(3) Let c be a characteristic value of T and let W be the space of

characteristic vectors associated with the characteristic value

c. What is the restriction operator T |W .

Solution. Every vector v ∈ W is a characteristic vector.

Hence, Tv = cv for all v ∈ W. Therefore, T |W = cI.

(4) Every matrix A satisfying A2 = A is similar to a diagonal

matrix.

Solution. A satisfies the polynomial x2−x. Thus, the min-

imal polynomial, mA(x), of A divides x2−x, that ismA(x) = x

or mA(x) = x− 1 or mA(x) = x(x− 1).

If mA(x) = x, then A = 0.

If mA(x) = x− 1, then A = I.

If mA(x) = x(x − 1), then the minimal polynomial of A

is product of distinct polynomials of degree one. Thus, by

a Theorem, the matrix A is similar to diagonal matrix with

diagonal entries consisting of the characteristic values, 0 and

1.

(5) Let T be a linear operator on V. If every subspace of V is

invariant under T then it is a scalar multiple of the identity

operator.

Solution. If dimV = 1 then for any 0 ̸= v ∈ V, we have

Tv = cv, since V is invariant under T. Hence, T = cI.

Assume that dimV > 1 and let B = {v1, v2, · · · , vn} be

a basis for V. Since W1 = ⟨v1⟩ is invariant under T, we have

Tv1 = c1v1. Similarly, since W2 = ⟨v2⟩ is invariant under T, we
have Tv2 = c2v2. Now, W3 = ⟨v1+v2⟩ is also invariant under T.
Hence, T (v1+v2) = λ(v1+v2) or c1v1+c2v2 = λ(v1+v2), which

gives us (c1 − λ)v1 + (c2 − λ)v2 = 0. However, v1 and v2 are

linearly independent and hence we should have c1 = c2 = λ.

Similarly, one can continue with the subspace ⟨v1 + v2 + v3⟩
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and observe that T (v3) = λv3. So for any vi ∈ B, we have

Tvi = λvi. Thus, T = λI.

(6) Let V be the vector space of n× n matrices over F. Let A be

a fixed n× n matrix. Let T be a linear operator on V defined

by T (B) = AB. Show that the minimal polynomial of T is the

minimal polynomial of A.

Solution. Let mA(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be

the minimal polynomial of A, so that mA(A) = 0. It is easy

to see that T k(B) = AkB for any k ≥ 1. Then, for any B ∈ V

we have

mA(T )B = (T n + an−1T
n−1 + · · ·+ a1T + a0I)B

= T n(B) + an−1T
n−1(B) + · · ·+ a1T (B) + a0B

= AnB + an−1A
n−1B + · · ·+ a1AB + a0B

= (An + an−1A
n−1 + · · ·+ a1A+ a0I)B

= mA(A)B = 0.

Thus, we obtain mA(T ) = 0, which means that mT (x) divides

mA(x).

Now, let mT (x) = xm + cm−1x
m−1 + · · · + c1x + c0 be the

minimal polynomial of T, so that mT (T ) = 0. Then, for any

B ∈ V we have

mT (A)B = (Am + cm−1A
m−1 + · · ·+ c1A+ c0I)B

= AmB + cm−1A
m−1B + · · ·+ c1AB + c0B

= Tm(B) + cm−1T
m−1(B) + · · ·+ c1T (B) + c0B

= (Tm + cm−1T
m−1 + · · ·+ c1T + c0I)B

= mT (T )B = 0,

which leads tomT (A) = 0,meaning thatmA(x) dividesmT (x).

Since, monic polynomials dividing each other are the same we

have mT (x) = mA(x).
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(7) If E is a projection and f is a polynomial, then show that

f(E) = aI + bE. What are a and b in terms of the coefficients

of f?

Solution. Let f(x) = c0+ c1x+ · · ·+ cnx
n. Then, f(E) =

c0I + c1E + · · ·+ cnE
n. Since E is a projection, (E2 = E), we

have Ek = E for any k ≥ 1. Then,

f(E) = c0I + c1E + · · ·+ cnE
n

= c0I + c1E + · · ·+ cnE

= c0I + (c1 + · · ·+ cn)E.

Thus, a is the constant term of f and b is the sum of all other

coefficients.

(8) Let V be a finite dimensional vector space and let W1 be any

subspace of V. Prove that there is a subspace W2 of V such

that V = W1 ⊕W2.

Proof. Let BW1 = {β1, · · · , βk} be a basis for W1. We may

extend BW1 to a basis BV of V, say BV = {β1, · · · , βk, βk+1, · · · , βn}.
Let W2 be the subspace spanned by βk+1, · · · , βn. Then, as

they are linearly independent in V, we have BW2 = {βk+1, · · · , βn}.
Clearly W1 + W2 = V as W1 + W2 contains a basis of V

and so spans V. Let β ∈ W1 ∩ W2. Then, β ∈ W1 implies

that β = c1β1 + · · · + ckβk, and β ∈ W2 implies that β =

ck+1βk+1 + · · · + cnβn. The last two equalities give us c1β1 +

· · ·+ckβk−ck+1βk+1−· · ·+cnβn = 0, but since βi’s are linearly

independent, we obtain ci = 0 for all i = 1, · · · , n which means

that β = 0. That is W1 ∩W2 = {0}, and hence V = W1 ⊕W2.

(9) Let V be a real vector space and E be an idempotent lin-

ear operator on V, that is a projection. Prove that I + E is

invertible. Find (I + E)−1.

Proof. Since E is an idempotent linear operator it is

diagonalizable by Question 4. So there exists a basis of V

consisting of characteristics vectors of E corresponding to the

characteristic values 0 and 1. That is, there exists a basis
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B = {β1, · · · , βn} such that Eβi = βi for i = 1, · · · , k, and
Eβi = 0 for i = k + 1, · · · , n. Then (I + E)βi = 2βi for

i = 1, · · · , k and (I + E)βi = βi for i = k + 1, · · · , n, that is,

[I + E]B =

[
2I1 0

0 I2

]
,

where I1 stands for k× k identity matrix, I2 is (n− k)× (n−
k) identity matrix and each 0 represents the zero matrix of

appropriate dimension. It is now easy to see that [I + E]B is

invertible, since det(I + E) = 2k ̸= 0.

To find the inverse of (I + E), we note that

([I + E]B)
−1 =

[
1
2
I1 0

0 I2

]
=

[
I1 0

0 I2

]
+

[
−1

2
I1 0

0 0

]
= I − 1

2
[E]B.

Therefore, (I + E)−1 = I − 1
2
E. (You may verify that really

this is the inverse, by showing that (I + E)(I − 1
2
E) = (I −

1
2
E)(I + E) = I.)

(10) Let T be a linear operator on V which commutes with every

projection operator on V. What can you say about T?

Solution. Let B be a basis for V and βi ∈ B, i ∈ I where

I is some index set. We can write V as a direct sum V =

Wi ⊕ U where Wi = ⟨βi⟩. Then there exists a projection Ei of

V onto the subspace Wi for each i ∈ I. Note that Eiv ∈ Wi

for all v ∈ V, and Eiβi = βi. Now, by assumption, the linear

operator T commutes with Ei for all i ∈ I, that is, TEi = EiT.

Then, for βi ∈ Wi, we have TEiβi = EiTβi ∈ Wi implies that

Tβi = T (Eiβi) = ciβi for some constant ci ∈ F. Thus, βi is a

characteristic vector of T. Hence, V has a basis consisting of

characteristic vectors of T. It follows that T is a diagonalizable

linear operator on V.

(11) Let V be the vector space of continuous real valued functions

on the interval [−1, 1] of the real line. Let We be the space
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of even functions, f(−x) = f(x), and Wo be the space of odd

functions, f(−x) = −f(x).

a) Show that V = We ⊕Wo.

b) If T is the indefinite integral operator (Tf)(x) =

∫ x

0

f(t)dt,

are We and Wo invariant under T?

Solution. a) Let f ∈ V. Then, we may write

f(x) =
f(x) + f(−x) + f(x)− f(−x)

2
=

f(x) + f(−x)

2
+
f(x)− f(−x)

2
.

Observe that fe(x) =
f(x) + f(−x)

2
is a continuous even func-

tion and fo(x) =
f(x)− f(−x)

2
is a continuous odd function.

Hence, f = fe + fo, that is V = We + Wo. To show that

V = We ⊕Wo, we need to show that We ∩Wo = {0}. To see

this, let g ∈ We∩Wo. Then, g ∈ We implies that g(−x) = g(x),

and g ∈ Wo implies that g(−x) = −g(x). Thus, we have

g(x) = −g(x) or g(x) = 0 for all x ∈ [−1, 1], which means

that g = 0.

b) For f(x) = x ∈ Wo, we have (Tf)(x) = x2/2 /∈ Wo,

and for g(x) = x2 ∈ We, we have (Tg)(x) = x3/3 /∈ We. Thus,

neither We nor Wo are invariant under T.

(12) Let V be a finite dimensional vector space over the field F, and
let T be a linear operator on V, such that rank(T ) = 1. Prove

that either T is diagonalizable or T is nilpotent, but not both.

Proof. Since rank(T ) = dim(Im(T )) = 1, we have dim(Ker(T )) =

n − 1. Let 0 ̸= β ∈ Im(T ). So, Im(T ) = ⟨β⟩. Since β ∈
Im(T ), there exists a vector α0 ∈ V such that Tα0 = β.

Let {α1, α2, · · · , αn−1} be a basis for Ker(T ). Then, B =

{α0, α1, α2, · · · , αn−1} is a basis for V.

We have Tαi = 0 for all i = 1, 2, · · · , n− 1.



8 M. KUZUCUOĞLU

If Tα0 ∈ Ker(T ), then Tα0 = c1α1 + · · ·+ cn−1αn−1 and

[T ]B =


0 0 0 · · · 0

c1 0 0 · · · 0

c2 0 0 · · · 0
...

...
...

. . .
...

cn−1 0 0 · · · ...


and it is easily seen that T 2 = 0 meaning that T is nilpotent.

Note that at least one of ci’s is nonzero, since otherwise, α0

would be in Ker(T ) which contradicts with the choice of B.
If Tα0 /∈ Ker(T ), then Tβ ∈ Im(T ) and Tβ = c0β. In this

case we construct a new basis B′ = {β, α1, α2, · · · , αn−1} and

[T ]B′ =


c0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


which means that T is diagonalizable.

(13) Let T be a linear operator on the finite dimensional vector

space V. Suppose T has a cyclic vector. Prove that if U is any

linear operator which commutes with T , then U is a polyno-

mial in T.

Proof. Let B = {α, Tα, · · · , T n−1α} be a basis for V

containing the cyclic vector α and let m(x) = xn+an−1x
n−1+

· · ·+ a1x+ a0 be the minimal polynomial of T. Since Uα is in

V, it can be written as a linear combination of basis vectors.

Then, Uα = b0α+b1Tα+· · ·+bn−1T
n−1α where b0, b1, · · · , bn−1

are elements of the field F. That is, (b0I+b1T+· · ·+bn−1T
n−1−

U)α = 0. Now, since U and T commute, we have

UT (α) = TU(α) = T (b0α + b1Tα + · · ·+ bn−1T
n−1α)

= b0Tα + b1T
2α + · · ·+ bn−1T

nα

= (b0I + b1T + · · ·+ bn−1T
n−1)Tα
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which means that

(b0I + b1T + · · ·+ bn−1T
n−1 − U)Tα = 0.

Similarly, we can show that (b0I + b1T + · · · + bn−1T
n−1 −

U)T iα = 0 for all i = 2, 3, · · · , n− 1. Since the transformation

b0I + b1T + · · ·+ bn−1T
n−1 − U maps each basis vector to the

zero vector, it is identically equal to zero on the whole space.

Thus, we obtain

U = b0I + b1T + · · ·+ bn−1T
n−1.

(14) Give an example of two 4 × 4 nilpotent matrices which have

the same minimal polynomial but which are not similar.

Solution. LetA =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 andB =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

 .

It is easy to see that mA(x) = mB(x) = x2 but they are

not similar since, A has 3 distinct characteristic vectors corre-

sponding to the characteristic value zero, but B has only two

characteristic vectors corresponding to the characteristic value

zero.

(15) Show that ifN is a nilpotent linear operator on an n−dimensional

vector space V, then the characteristic polynomial for N is xn.

Solution. Recall that N is nilpotent, if Nk = 0 for some

k ∈ N+. Since, N is a nilpotent linear operator on V, the

minimal polynomial for N is of the form xm for some m ≤
n. Then, all characteristic values of N are zero. Since the

minimal polynomial is a product of linear polynomials, N is a

triangulable operator. It follows that there exists a basis B of
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V such that

[N ]B =


0 0 · · · 0

⋆ 0 · · · 0

⋆ ⋆
. . .

...

⋆ ⋆ · · · 0

 .

since, similar matrices have the characteristic polynomial, it

follows that the characteristic polynomial of N is xn where

n = dimV.

(16) Let T be a linear operator on R3 which is represented in the

standard ordered basis by the matrix 2 0 0

0 2 0

0 0 −1

 .

Prove that T has no cyclic vector. What is the T cyclic sub-

space generated by the vector β = (1,−1, 3)?

Solution. Assume that T has a cyclic vector α = (a1, a2, a3).

Then B = {α, Tα, T 2α} will be a basis for R3. That is, the vec-

tors α = (a1, a2, a3), Tα = (2a1, 2a2,−a3), T
2α = (4a1, 4a2, a3)

must be linearly independent, or the matrix a1 a2 a3
2a1 2a2 −a3
4a1 4a2 a3


must be invertible. Applying elementary row operations, we

obtain a1 a2 a3
2a1 2a2 −a3
4a1 4a2 a3

−2R1 +R2

−→
−4R1 +R3

 a1 a2 a3
0 0 −3a3
0 0 −3a3

−2R2 +R3

−→
−1

3
R2

 a1 a2 a3
0 0 a3
0 0 0


which is not invertible. Hence, T has no cyclic vector.

To find the cyclic subspace generated by β, it is enough to

check if β and Tβ are independent since we have already shown

that the set {α, Tα, T 2α} can not be linearly independent for

any α ∈ R3. Clearly, β = (1,−1, 3) and Tβ = (2,−2,−3) are
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linearly independent since, otherwise, one of them would be a

multiple of the other one which is not the case here. Thus, the

cyclic subspace generated by β is

Z(β;T ) = ⟨(1,−1, 3), (2,−2,−3)⟩ = {λ(1,−1, 3)+µ(2,−2,−3) : λ, µ ∈ R}.

(17) Find the minimal polynomial and rational form of the matrix

T =

 c 0 −1

0 c 1

−1 1 c

 .

Solution. The characteristic polynomial of T is

fT (x) = det(xI − T ) =

∣∣∣∣∣∣∣
x− c 0 1

0 x− c −1

1 −1 x− c

∣∣∣∣∣∣∣
= (x− c)

∣∣∣∣∣ x− c −1

−1 x− c

∣∣∣∣∣+
∣∣∣∣∣ 0 1

x− c −1

∣∣∣∣∣
= (x− c)((x− c)2 − 1)− (x− c)

= (x− c)((x− c)2 − 2)

= (x− c)(x− c−
√
2)(x− c+

√
2).

Since the characteristic polynomial and the minimal polyno-

mial have the same roots and the minimal polynomial di-

vides the characteristic polynomial we have mT (x) = fT (x) =

(x − c)((x − c)2 − 2) = (x − c)3 − 2(x − c) = x3 + (−3c)x2 +

(3c2 − 2)x+ (−c3 + 2c). Thus the rational form of T is

R =

 0 0 c3 − 2c

1 0 −3c2 + 2

0 1 3c

 .


