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a b s t r a c t

In this paper, we apply the method of Lyapunov functions for differential equations with piecewise
constant argument of generalized type to a model of recurrent neural networks (RNNs). The model
involves both advanced and delayed arguments. Sufficient conditions are obtained for global exponential
stability of the equilibrium point. Examples with numerical simulations are presented to illustrate the
results.
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1. Introduction

Recurrent neural networks (RNNs), especially Hopfield neural
networks, cellular neural networks (CNNs) and delayed cellular
neural networks (DCNNs), have been deeply investigated in recent
years due to their applicability in solving image processing, pattern
recognition, associative memory, and optimization problems
(Chua, 1998; Chua & Roska, 1990, 1992; Chua & Yang, 1988a,
1988b; Civalleri, Gilli, & Pandolfi, 1993; Forti & Tesi, 1995;Hopfield,
1984; Michel, Farrell, & Porod, 1989).
It is well known that applications of RNNs depend crucially

on the dynamical behavior of the networks. In these applications,
stability and convergence of neural networks are prerequisites.
However, in the design of neural networks one is interested not
only in the uniform asymptotic stability (Akhmet & Aruğaslan,
2009; Akhmet, Aruğaslan, & Yılmaz, 2010) but also in the
global exponential stability, which guarantees a neural network
to converge fast enough in order to achieve fast response. In
addition, in the analysis of dynamical neural networks for parallel
computation and optimization, to increase the rate of convergence
to the equilibrium point of the networks and reduce the neural
computing time, it is necessary to ensure a desired exponential
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convergence rate of the networks’ trajectories, starting from
arbitrary initial states to the equilibrium point which corresponds
to the optimal solution. Thus, from the mathematical and
engineering points of view, it is required that the neural networks
have a unique equilibrium point which is globally exponentially
stable. Therefore, the problem of stability analysis of RNNs has
received great attention and many results on this topic have been
reported in the literature; see, e.g., Arik (2002), Cao (2001), Chen
(2001), Chen and Amari (2001), Huang, Cao, and Wang (2002),
Liao, Wu, and Yu (2002), Mohamad and Gopalsamy (2003), Park
(2006), Song (2008), Xu, Chu, and Lu (2006); Xu, Lamb, Ho, and
Zoua (2005), Zeng and Wang (2006a, 2006b, 2006c), Zeng, Wang,
and Liao (2003), Zhang (2003), Zhang (2005), Zhang and Wang
(2007), Zhang, Wang, and Liu (2008); Zhang, Wei, and Xu (2004,
2007) and Zhou and Cao (2002) and the references therein.
Lyapunov functions and functionals are among the most

popular tools in studying the problem of the stability for RNNs
(see Arik, 2002; Belair, Campbell, & Driessche, 1996; Cao, 2001,
1999, 2000; Chen, 2001; Chen & Amari, 2001; Driessche & Zou,
1998; Huang et al., 2002; Liao et al., 2002; Mohamad & Gopalsamy,
2003; Park, 2006; Xu et al., 2006, 2005; Zeng & Wang, 2006a,
2006c; Zhang, 2003, 2005; Zhang et al., 2004, 2007; Zhou & Cao,
2002). However, it is difficult to construct Lyapunov functions
or functionals that satisfy the strong conditions required in
classical stability theory. In this paper, we investigate some new
stability conditions for the RNN model based on the second
Lyapunov method. Although this model includes both advanced
and delayed arguments, it deserves to be mentioned that new
stability conditions are given in terms of inequalities, and it is
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known that for equations with deviating argument this method
necessarily utilizes functionals (Cooke &Wiener, 1984; Hale, 1997;
Krasovskii, 1963; Wiener, 1993).
The theory of differential equations with piecewise constant

argument (EPCAs) was initiated in Cooke and Wiener (1984) and
Shah and Wiener (1983). These equations have been under inten-
sive investigation for the last twenty years. They represent a hy-
brid of continuous and discrete dynamical systems and combine
the properties of both the differential and difference equations.
In fact, the theory of EPCAs is based on the reduction of the EP-
CAs to discrete equations, and it has been the main and possibly
a unique method of stability analysis for these equations (Cooke
&Wiener, 1984; Wiener, 1993). Hence, one cannot investigate the
problemof stability completely, as only elements of a countable set
are allowed to be discussed as initial moments by this method. By
introducing arbitrary piecewise constant functions as arguments,
the concept of differential equations with piecewise constant ar-
gument has been generalized in Akhmet (2006, 2007) and Akhmet
(2008a, 2008b). All of these equations are reduced to equivalent
integral equations such that one can investigate many problems
which have not been solved properly by using discrete equations,
i.e., the existence and uniqueness of solutions, and stability. Since
we do not need additional assumptions on the reduced discrete
equations, the new method requires more easily verifiable condi-
tions, similar to those for ordinary differential equations.
To the best of our knowledge, the equations with piecewise

constant arguments were not considered as models of RNNs,
except possibly in Akhmet et al. (2010) and Akhmet and Yılmaz
(in press). In Akhmet (2006), Akhmet (2007), Akhmet (2008a),
Akhmet (2008b), Akhmet and Aruğaslan (2009), Akhmet and
Büyükadalı(2010), Akhmet et al. (2010), Akhmet, Aruğaslan, and
Yılmaz (in press) and Akhmet and Yılmaz (in press) we discuss
stability problems. Unlike in these papers, in Akhmet et al.
(in press) the stability was analyzed by the second Lyapunov
method. Nevertheless, this is the first time that the secondmethod
has been applied to the equations, whose arguments in the present
paper are not only delayed but also advanced. Moreover, one
should emphasize that there is an opportunity of application of the
Lyapunov function technique to estimate domains of attraction,
which has a particular interest in evaluating the performance of
RNNs (Xu et al., 2006; Yang, Liao, Li, & Evans, 2006).
The crucial novelty of the paper is that the system is of

mixed type; in other words, the argument can be advanced
during the process. In the literature, biological reasons for the
argument to be delayed have been discussed well (Hoppensteadt
& Peskin, 1992; Murray, 2002). Due to the finite switching speed
of amplifiers and transmission of signals in electronic networks or
finite speed for signal propagation in neural networks, time delays
exist (Chua & Roska, 1992, 1990; Chua & Yang, 1988b; Civalleri
et al., 1993). In the present paper, we proceed from the fact that
delayed as well as advanced arguments play a significant role
in electromagnetic fields; see, for example, Driver (1979), where
the symmetry of the physics laws was emphasized with respect
to time reversal. Consequently, one can suppose that analysis of
neural networks, which is based on electrodynamics, may result
in the comprehension of the deviation, especially the advanced
one, in themodels more clearly. Therefore, in the future analysis of
RNNs, the systems introduced in the present paper can be useful.
Furthermore, different types of deviation of the argument may
depend on the emergence of traveling waves in CNNs (Weng &
Wu, 2003). Understanding the structure of such traveling waves
is important due to their potential applications, including image
processing (see, for example, Chua, 1998; Chua & Roska, 1992,
1990; Chua & Yang, 1988a, 1988b; Hsu, Lin, & Shen, 1999). On
the other hand, the importance of anticipation for biology, which
can be modeled with advanced arguments, is mentioned by some
authors. For instance, in Buck and Buck (1968), it is supposed that
synchronization of biological oscillators may request anticipation
of counterparts’ behavior.
2. Model formulation and preliminaries

Let N and R+ be the sets of natural and nonnegative real num-
bers, respectively; i.e., N = {0, 1, 2, . . .}, R+ = [0,∞). Denote
the n-dimensional real space by Rn, n ∈ N, and the norm of a
vector x ∈ Rn by ‖x‖ =

∑n
i=1 |xi|. We fix two real-valued se-

quences θi, ζi, i ∈ N, such that θi < θi+1, θi ≤ ζi ≤ θi+1 for all
i ∈ N, θi → ∞ as i → ∞, and shall consider the following RNN
model described by differential equations with piecewise constant
argument of generalized type:

x′i(t) = −aixi(t)+
n∑
j=1

bijfj(xj(t))+
n∑
j=1

cijgj(xj(γ (t)))+ Ii,

ai > 0, i = 1, 2, . . . , n, (2.1)

where γ (t) = ζk, if t ∈ [θk, θk+1), k ∈ N, t ∈ R+, n corresponds to
the number of units in a neural network, xi(t) stands for the state
vector of the ith unit at time t , fj(xj(t)) and gj(xj(γ (t))) denote, re-
spectively, the measures of activation to its incoming potentials of
the unit j at time t and γ (t), bij, cij, Ii are real constants, bij means
the strength of the jth unit on the ith unit at time t , cij infers the
strength of the jth unit on the ith unit at time γ (t), Ii signifies the
external bias on the ith unit and ai represents the rate with which
the ith unit will reset its potential to the resting state in isolation
when it is disconnected from the network and external inputs.
Let us clarify why the system (2.1) is ofmixed type (Hale, 1997),

that is, the argument can change its deviation character during the
motion. The argument is deviated if it is advanced or delayed. Fix
k ∈ N, and consider the system on the interval [θk, θk+1). Then, the
identification function γ (t) is equal to ζk. If the argument t satisfies
θk ≤ t < ζk, then γ (t) > t and (2.1) is an equation with advanced
argument. Similarly, if ζk < t < θk+1, then γ (t) < t and (2.1) is an
equation with delayed argument. Consequently, Eq. (2.1) changes
the type of deviation of the argument during the process. In other
words, the system is of mixed type.
The following assumptions will be needed throughout the

paper:

(A1) the activation functions fj, gj ∈ C(Rn) satisfy fj(0) = 0, gj(0)
= 0 for each j = 1, 2, . . . , n;

(A2) there exist Lipschitz constants L1i , L
2
i > 0 such that

|fi(u)− fi(v)| ≤ L1i |u− v|,

|gi(u)− gi(v)| ≤ L2i |u− v|

for all u, v ∈ Rn, i = 1, 2, . . . , n;
(A3) there exists a positive number θ such that θi+1−θi ≤ θ , i ∈ N;
(A4) θ [m1 + 2m2] em1θ < 1;
(A5) θ

[
m2 +m1(1+m2θ)em1θ

]
< 1,

where

m1 = max
1≤i≤n

(
ai + L1i

n∑
j=1

|bji|

)
, m2 = max

1≤i≤n

(
L2i

n∑
j=1

|cji|

)
.

In our paper we assume that the solutions of Eq. (2.1) are
continuous functions. But the deviating argument γ (t) is discon-
tinuous. Thus, in general, the right-hand side of (2.1) has dis-
continuities at moments θi, i ∈ N. As a result, we consider the
solutions of the equations as functions, which are continuous and
continuously differentiable within intervals [θi, θi+1), i ∈ N. In
other words, by a solution x(t) = (x1(t), . . . , xn(t))T of (2.1) we
mean a continuous function onR+ such that the derivative x′(t) ex-
ists at each point t ∈ R+, with the possible exception of the points
θi, i ∈ N, where a one-sided derivative exists, and the differential
equation (2.1) is satisfied by x(t) on each interval (θi, θi+1) as well.
In the following theorem,we obtain sufficient conditions for the

existence of a unique equilibrium, x∗ = (x∗1, . . . , x
∗
n)
T , of (2.1).
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Theorem 2.1. Suppose that (A1) and (A2) hold. If the neural param-
eters ai, bij, cij satisfy

ai > L1i
n∑
j=1

|bji| + L2i
n∑
j=1

|cji|, i = 1, . . . , n,

then (2.1) has a unique equilibrium x∗ = (x∗1, . . . , x
∗
n)
T .

The proof of the theorem is almost identical to that of Theorem 2.1
in Mohamad and Gopalsamy (2003), and thus we omit it here.
The next theorem provides conditions for the existence and

uniqueness of solutions on t ≥ t0. The proof of the assertion is
similar to that of Theorem 1.1 in Akhmet (2007) and Theorem 2.2
in Akhmet et al. (2010). But, for convenience of the reader, we give
the full proof of the assertion.

Theorem 2.2. Assume that conditions (A1)–(A4) are fulfilled.
Then, for every (t0, x0) ∈ R+ × Rn, there exists a unique solution
x(t) = x(t, t0, x0) = (x1(t), . . . , xn(t))T , t ≥ t0, of (2.1), such that
x(t0) = x0.

Proof (Existence). Fix k ∈ N. We assume without loss of generality
that θk ≤ ζk < t0 ≤ θk+1. To begin with, we shall prove that,
for every (t0, x0) ∈ [θk, θk+1] × Rn, there exists a unique solution
x(t) = x(t, t0, x0) = (x1(t), . . . , xn(t))T , of (2.1) such that x(t0) =
x0 = (x01, . . . , x

0
n)
T .

Let us denote for simplicity z(t) = x(t, t0, x0), z(t) = (z1, . . . ,
zn)T , and consider the equivalent integral equation

zi(t) = x0i +
∫ t

t0

[
−aizi(s)+

n∑
j=1

bijfj(zj(s))

+

n∑
j=1

cijgj(zj(ζk))+ Ii

]
ds.

Define a norm ‖z(t)‖0 = max[ζk,t0] ‖z(t)‖ and construct the
following sequences zmi (t), z

0
i (t) ≡ x

0
i , i = 1, . . . , n, m ≥ 0 such

that

zm+1i (t) = x0i +
∫ t

t0

[
−aizmi (s)+

n∑
j=1

bijfj(zmj (s))

+

n∑
j=1

cijgj(zmj (ζk))+ Ii

]
ds.

One can find that

‖zm+1(t)− zm(t)‖0 ≤ [θ(m1 +m2)]m τ ,

where

τ = θ

[
(m1 +m2) ‖x0‖ +

n∑
i=1

Ii

]
.

Thus, there exists a unique solution z(t) = x(t, t0, x0) of the inte-
gral equation on [ζk, t0]. Then, conditions (A1) and (A2) imply that
x(t) can be continued to θk+1, since it is a solution of the ordinary
differential equations

x′i(t) = −aixi(t)+
n∑
j=1

bijfj(xj(t))+
n∑
j=1

cijgj(xj(ζk))+ Ii,

ai > 0, i = 1, 2, . . . , n

on [θk, θk+1). Next, again, using same argument, we can continue
x(t) from t = θk+1 to t = ζk+1, and then to θk+2. Hence, the math-
ematical induction completes the proof.
Uniqueness: Denote by x1(t) = x(t, t0, x1), x2(t) = x(t, t0, x2)
the solutions of (2.1), where θk ≤ t0 ≤ θk+1. It is sufficient to
check that, for every t ∈ [θk, θk+1], x2 = (x21, . . . , x

2
n)
T , x1 = (x11,

. . . , x1n)
T
∈ Rm, x2 6= x1 implies that x1(t) 6= x2(t). Then, we have

that

‖x1(t)− x2(t)‖ ≤ ‖x1 − x2‖ +
n∑
i=1

{∫ t

t0

[
ai|x2i (s)− x

1
i (s)|

+

n∑
j=1

L1i |bji| |x
2
i (s)− x

1
i (s)|

+

n∑
j=1

L2i |cji| |x
2
i (ζk)− x

1
i (ζk)|

]
ds

}
≤
(
‖x1 − x2‖ + θm2‖x1(ζk)− x2(ζk)‖

)
+

∫ t

t0
m1‖x1(s)− x2(s)‖ds.

The Gronwall–Bellman Lemma yields that

‖x1(t)− x2(t)‖ ≤
(
‖x1 − x2‖ + θm2‖x1(ζk)− x2(ζk)‖

)
em1θ .

In particular,

‖x1(ζk)− x2(ζk)‖ ≤
(
‖x1 − x2‖ + θm2‖x1(ζk)− x2(ζk)‖

)
em1θ .

Thus,

‖x1(t)− x2(t)‖ ≤
(

em1θ

1−m2θem1θ

)
‖x1 − x2‖. (2.2)

On the other hand, assume on the contrary that there exists t ∈
[θk, θk+1] such that x1(t) = x2(t). Hence,

‖x1 − x2‖ =
n∑
i=1

∣∣∣∣∣
∫ t

t0

[
−ai

(
x2i (s)− x

1
i (s)

)
+

n∑
j=1

bij
[
fj(x2j (s))− fj(x

1
j (s))

]
+

n∑
j=1

cij
[
gj(x2j (ζk))− gj(x

1
j (ζk))

]]
ds

∣∣∣∣∣
≤

n∑
i=1

{∫ t

t0

[
ai|x2i (s)− x

1
i (s)|

+

n∑
j=1

L1i |bji| |x
2
i (s)− x

1
i (s)|

+

n∑
j=1

L2i |cji| |x
2
i (ζk)− x

1
i (ζk)|

]
ds

}
≤ θm2‖x1(ζk)− x2(ζk)‖

+

∫ t

t0
m1‖x1(s)− x2(s)‖ds. (2.3)

Consequently, substituting (2.2) in (2.3), we obtain

‖x1 − x2‖ ≤ θ(m1 + 2m2)em1θ‖x1 − x2‖. (2.4)

Thus, one can see that (A4) contradicts (2.4). The uniqueness is
proved for t ∈ [θk, θk+1]. The extension of the unique solution on
R+ is obvious. Hence, the theorem is proved. �

Definitions of Lyapunov stability for the solutions of the
discussed system can be given in the same way as for ordinary
differential equations. Let us give only one of them.
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Definition 2.1 (Akhmet, 2008a). The equilibrium x = x∗ of (2.1) is
said to be globally exponentially stable if there exist positive con-
stants α1 and α2 such that the estimation ‖x(t)− x∗‖ < α1‖x(t0)
− x∗‖e−α2(t−t0) is valid for all t ≥ t0.

System (2.1) can be simplified as follows. Substituting y(t) =
x(t)− x∗ into (2.1) leads to

y′i(t) = −aiyi(t)+
n∑
j=1

bijϕj(yj(t))+
n∑
j=1

cijψj(yj(γ (t))), (2.5)

where ϕj(yj(t)) = fj(yj(t)+ x∗j )− fj(x
∗

j ) andψj(yj(t)) = gj(yj(t)+
x∗j ) − gj(x

∗

j ) with ϕj(0) = ψj(0) = 0. From assumption (A2), ϕj(·)
and ψj(·) are also Lipschitzian with L1j , L

2
j , respectively.

It is clear that the stability of the zero solution of (2.5) is
equivalent to that of the equilibrium x∗ of (2.1). Therefore, we
restrict our discussion to the stability of the zero solution of (2.5).
First of all, we give the following lemma, which is one of the

most important auxiliary results of the present paper.

Lemma 2.1. Let y(t) = (y1(t), . . . , yn(t))T be a solution of (2.5)
and let (A1)–(A5) be satisfied. Then, the following inequality

‖y(γ (t))‖ ≤ λ‖y(t)‖ (2.6)

holds for all t ∈ R+, where λ = {1−θ [m2+m1 (1+m2θ) em1θ ]}−1.

Proof. Fix k ∈ N. Then, for t ∈ [θk, θk+1),

yi(t) = yi(ζk)+
∫ t

ζk

[
−aiyi(s)+

n∑
j=1

bijϕj(yj(s))

+

n∑
j=1

cijψj(yj(ζk))

]
ds,

where γ (t) = ζk, if t ∈ [θk, θk+1), t ∈ R+. Taking absolute value
of both sides for each i = 1, 2, . . . , n and adding all equalities, we
obtain that

‖y(t)‖ ≤ ‖y(ζk)‖ +
n∑
i=1

{∫ t

ζk

[
ai|yi(s)| +

n∑
j=1

L1j |bij| |yj(s)|

+

n∑
j=1

L2j |cij| |yj(ζk)|

]
ds

}

= ‖y(ζk)‖ +
∫ t

ζk

[
n∑
i=1

(
ai + L1i

n∑
j=1

|bji|

)
|yi(s)|

+

n∑
i=1

n∑
j=1

L2i |cji| |yi(ζk)|

]
ds

≤ (1+m2θ)‖y(ζk)‖ +
∫ t

ζk

m1‖y(s)‖ds.

The Gronwall–Bellman Lemma yields

‖y(t)‖ ≤ (1+m2θ)em1θ‖y(ζk)‖. (2.7)

Furthermore, for t ∈ [θk, θk+1), we have

‖y(ζk)‖ ≤ ‖y(t)‖ +
∫ t

ζk

[
n∑
i=1

(
ai + L1i

n∑
j=1

|bji|

)
|yi(s)|

+

n∑
i=1

n∑
j=1

L2i |cji| |yi(ζk)|

]
ds

≤ ‖y(t)‖ +m2θ‖y(ζk)‖ +
∫ t

ζk

m1‖y(s)‖ds.
The last inequality together with (2.7) implies that

‖y(ζk)‖ ≤ ‖y(t)‖ +m2θ‖y(ζk)‖ +m1θ(1+m2θ)em1θ‖y(ζk)‖.

Thus, it follows from condition (A4) that

‖y(ζk)‖ ≤ λ‖y(t)‖, t ∈ [θk, θk+1).

Hence, (2.6) holds for all t ∈ R+. This completes the proof. �

3. Main results

In this section, we establish several criteria for global exponen-
tial stability of (2.5) based on the method of Lyapunov functions.
For convenience, we adopt the following notation in what

follows:

m3 =
1
n
min
1≤i≤n

(
ai −

1
2

n∑
j=1

(
L1j |bij| + L

2
j |cij| + L

1
i |bji|

))
.

Theorem 3.1. Suppose that (A1)–(A5) hold true. Assume, further-
more, that the following inequality is satisfied:

m3 >
m2λ2

2
. (3.8)

Then system (2.5) is globally exponentially stable.

Proof. We define a Lyapunov function by

V (y(t)) =
1
2

n∑
i=1

y2i (t).

One can easily show that

1
2n
‖y(t)‖2 ≤ V (y(t)) ≤

1
2
‖y(t)‖2. (3.9)

For t 6= θi, i ∈ N, the time derivative of V with respect to (2.5) is
given by

V ′(2.5)(y(t)) =
n∑
i=1

yi(t)y′i(t)

=

n∑
i=1

yi(t)

[
−aiyi(t)+

n∑
j=1

bijϕj(yj(t))+
n∑
j=1

cijψj(yj(γ (t)))

]

≤

n∑
i=1

[
−aiy2i (t)+

n∑
j=1

L1j |bij| |yi(t)| |yj(t)|

+

n∑
j=1

L2j |cij| |yi(t)| |yj(γ (t))|

]

≤

n∑
i=1

[
−aiy2i (t)+

1
2

n∑
j=1

L1j |bij|(y
2
i (t)+ y

2
j (t))

+
1
2

n∑
j=1

L2j |cij|(y
2
i (t)+ y

2
j (γ (t)))

]

≤ −

n∑
i=1

[(
ai −

1
2

n∑
j=1

(
L1j |bij| + L

2
j |cij| + L

1
i |bji|

))
y2i (t)

]

+
1
2

n∑
i=1

n∑
j=1

L2i |cji|y
2
i (γ (t))

≤ − min
1≤i≤n

(
ai −

1
2

n∑
j=1

(
L1j |bij| + L

2
j |cij| + L

1
i |bji|

))
n∑
i=1

y2i (t)
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+
1
2
max
1≤i≤n

(
L2i

n∑
j=1

|cji|

)
n∑
i=1

y2i (γ (t))

≤ −m3‖y(t)‖2 +
m2
2
‖y(γ (t))‖2.

By using Lemma 2.1, we obtain

V ′(2.5)(y(t)) ≤ −m3‖y(t)‖
2
+
m2λ2

2
‖y(t)‖2

= −

(
m3 −

m2λ2

2

)
‖y(t)‖2.

Now, define β for convenience as follows:

β = m3 −
m2λ2

2
> 0.

Then, we have, for t 6= θi,

d
dt
(e2βtV (y(t))) = e2βt(2β)V (y(t))+ e2βtV ′(2.5)(y(t))

≤ βe2βt ‖y(t)‖2 − βe2βt ‖y(t)‖2 = 0.

From (3.9) and using the continuity of the function V and the
solution y(t), we obtain

e2βt(1/2n) ‖y(t)‖2 ≤ e2βtV (y(t)) ≤ e2βt0V (y(t0))
≤ e2βt0(1/2) ‖y(t0)‖2 ,

which implies that ‖y(t)‖ ≤
√
n ‖y(t0)‖ e−β(t−t0). That is, system

(2.5) is globally exponentially stable. �

In the next theorem, we utilize the same technique as that used
in the previous theorem to find new stability conditions for RNNs
by choosing a different Lyapunov function, defined as

V (y(t)) =
n∑
i=1

αi|yi(t)|, αi > 0, i = 1, 2, . . . , n.

For simplicity of notation, let us denote

m4 = min
1≤i≤n

(
ai − L1i

n∑
j=1

|bji|

)
.

Theorem 3.2. Suppose that (A1)–(A5) hold true. Assume, further-
more, that the following inequality is satisfied:

m4 > m2λ. (3.10)

Then system (2.5) is globally exponentially stable.
The proof of the assertion is similar to that of Theorem 3.1, so we
omit it here.

4. Illustrative examples

In this section, we give three examples with simulations
to illustrate our results. In what follows, we assume that the
identification function γ (t) is such that θk = k/9, ζk = (2k +
1)/18, k ∈ N.

Example 4.1. Consider the following RNNs with the argument
function γ (t):

dx(t)
dt
= −

(
2 0
0 1.5

)(
x1(t)
x2(t)

)
+

(
0.02 0.03
0.01 1

)(
tanh(x1(t))
tanh(x2(t))

)

+

(
0.08 1
0.01 1

)tanh
(
x1(γ (t))
7

)
tanh

(
x2(γ (t))
6

)
+ (11

)
. (4.11)
It is easy to verify that (4.11) satisfies the conditions of Theo-
rem 3.1with L11 = L

1
2 = 1, L

2
1 = 1/7, L

2
2 = 1/6, m1 = 2.53, m2 =

0.3333, m3 = 0.6308,m4 = 0.47, λ = 1.7337, Thus, according
to this theorem, the unique equilibrium x∗ = (0.6011, 1.3654)T of
(4.11) is globally exponentially stable. However, condition (3.10)
of Theorem 3.2 is not satisfied.
Let us simulate a solution of (4.11)with initial condition x11(0) =

x01, x
1
2(0) = x

0
2. Since Eq. (4.11) is of mixed type, the numerical

analysis has a specific character and it should be described more
carefully. Onewill see that this algorithm is in full accordance with
the approximations made in the proof of Theorem 2.2.
We start with the interval [θ0, θ1]; that is, [0, 1/9]. On this in-

terval, Eq. (4.11) has the form

dx(t)
dt
= −

(
2 0
0 1.5

)(
x1(0)
x2(0)

)
+

(
0.02 0.03
0.01 1

)(
tanh(x1(0))
tanh(x2(0))

)

+

(
0.08 1
0.01 1

)tanh
(
x1(1/18)
7

)
tanh

(
x2(1/18)
6

)
+ (11

)
,

where xi(1/18), i = 1, 2, are still unknown. For this reason, we
will arrange approximations in the followingway. Consider the se-
quence of equations

dx(m+1)(t)
dt

= −

(
2 0
0 1.5

)(
x(m)1 (0)
x(m)2 (0)

)
+

(
0.02 0.03
0.01 1

)(
tanh(x(m)1 (0))
tanh(x(m)2 (0))

)

+

(
0.08 1
0.01 1

)
tanh

(
x(m)1 (1/18)

7

)

tanh

(
x(m)2 (1/18)

6

)
+

(
1
1

)
,

where m = 0, 1, 2, . . . , with x01(t) ≡ x
0
1, x

0
2(t) ≡ x

0
2. We evaluate

the solutions, x(m)(t), by using MATLAB 7.8, and stop the iterations
at (x(500)1 (t), x5002 (t)). Then, we assign x1(t) = x

(500)
1 (t), x2(t) =

x(500)2 (t) on the interval [θ0, θ1]. Next, a similar operation is done on
the interval [θ1, θ2]. That is, we construct the sequence (x

(m)
1 , x(m)2 )

of solutions again for the system

dx(m+1)(t)
dt

= −

(
2 0
0 1.5

)(
x(m)1 (0)
x(m)2 (0)

)
+

(
0.02 0.03
0.01 1

)(
tanh(x(m)1 (0))
tanh(x(m)2 (0))

)

+

(
0.08 1
0.01 1

)
tanh

(
x(m)1 (3/18)

7

)

tanh

(
x(m)2 (3/18)

6

)
+

(
1
1

)

with x01(t) ≡ x
(500)
1 (1/9), x02(t) ≡ x

(500)
2 (1/9). Then, we reassign

x1(t) = x
(500)
1 (t), x2(t) = x

(500)
2 (t) on [θ1, θ2]. Proceeding in this

way, one can obtain a simulation which demonstrates the asymp-
totic property.
Specifically, the simulation result with several random initial

points is shown in Fig. 1.Wemust explain that the non-smoothness
at the switching points θk, k ∈ N is not seen by simulation. That is
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Fig. 1. Transient behavior of the RNNs in Example 4.1.
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Fig. 2. The non-smoothness is seen atmoments 0.5, 1, and 1.5, which are switching
points of the function γ (t).

whywe have to choose the Lipschitz constants and θ small enough
to satisfy the conditions of the theorems. So, the smallness ‘‘hides’’
the non-smoothness.
Let us now take the parameters such that the non-smoothness

can be seen. Consider the following RNNs:

dx(t)
dt
= −

(
20 0
0 10

)(
x1(t)
x2(t)

)
+

(
2 1
8 0.2

)(
tanh(x1(t))
tanh(x2(t))

)

+

(
1 20
2 3

) tanh(x1(γ (t)))

tanh
(
x2(γ (t))
2

) + (11
)
, (4.12)

where θk = k/2, ζk = (2k + 1)/4, k ∈ N. One can see that θ
and the Lipschitz coefficient are large this time. They do not satisfy
the conditions of our theorems. It is illustrated in Fig. 2 that the
non-smoothness of the solution with the initial point [1, 2]T can
be seen at the switching points θk, k ∈ N. This is important for
us to see that the non-smoothness of solutions expected from the
equations’ nature is apparent. Moreover, we can see that the solu-
tion converges to the unique equilibrium x∗ = (0.4325, 0.6065)T .
This shows that the sufficient conditions which are found in our
theorems can be elaborated further.
Example 4.2. Consider the following RNNs:

dx(t)
dt
= −

(
2 0
0 2.5

)(
x1(t)
x2(t)

)

+

(
1 0.03
0.04 1

)tanh
(
x1(t)
4

)
tanh(x2(t))



+

(
1 0.04
0.02 0.07

)tanh
(
x1(γ (t))
4

)
tanh

(
x2(γ (t))
4

)
+ (11

)
. (4.13)

It can be shown easily that (4.13) satisfies the conditions of The-
orem 3.2 if L11 = 1/4, L

1
2 = 1, L

2
1 = 1/4, L

2
2 = 1/4,m1 = 3.53,

m2 = 0.2550,m3 = 0.6181,m4 = 1.47, λ = 2.6693, whereas
condition (3.8) of Theorem3.1 does not hold. Hence, it follows from
Theorem 3.2 that the unique equilibrium x∗ = (0.6737, 0.6265)T
of (4.13) is globally exponentially stable.

Example 4.3. Consider the following system of differential equa-
tions:
dx(t)
dt
= −

(
3 0
0 3

)(
x1(t)
x2(t)

)

+

(
0.02 0.03
0.04 0.25

)tanh
(
x1(t)
4

)
tanh

(
x2(t)
4

)


+

(
0.25 0.4
0.2 0.7

)tanh
(
x1(γ (t))
4

)
tanh

(
x2(γ (t))
4

)
+ (11

)
. (4.14)

One can see easily that the conditions of both Theorems 3.1 and
3.2 are satisfied with L11 = 1/4, L12 = 1/4, L21 = 1/4, L22 =
1/4, m1 = 3.07, m2 = 0.2750, m3 = 1.4081, m4 = 2.93, λ =
2.1052, τ = 1.1. Thus, according to Theorems 3.1 and 3.2 the
unique equilibrium x∗ = (0.4172, 0.4686)T of (4.14) is globally
exponentially stable.

5. Conclusion

This is the first time that the method of Lyapunov functions
for differential equations with piecewise constant argument of
generalized type has been applied to the model of RNNs, and
this paper has provided new sufficient conditions guaranteeing
the existence, uniqueness, and global exponential stability of the
equilibrium point of the RNNs. In addition, our method gives new
ideas not only from the modeling point of view, but also from that
of theoretical opportunities since the RNNmodel equation involves
piecewise constant arguments of both advanced anddelayed types.
The obtained results could be useful in the design and applications
of RNNs. Furthermore, the method given in this paper may be
extended to study more complex systems (Akhmet, 2009). On the
basis of our results, Lyapunov functions give an opportunity to
estimate domains of attraction, of particular interest in evaluating
the performance of RNNs (Xu et al., 2006; Yang et al., 2006).
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