DYNAMICAL SYNTHESIS OF QUASI-MINIMAL SETS

M. U. AKHMET
Department of Mathematics and Institute of Applied Mathematics,
Middle East Technical University, 06531 Ankara, Turkey
maral@metu.edu.tr

Received May 6, 2008; Revised December 5, 2008

We address a nonautonomous differential equation with a pulse function, whose moments of discontinuity depend on the initial moment. Existence of a quasi-minimal set is proved. An appropriate simulation of a chaotic attractor is presented.

Keywords: Differential equations; pulse functions; Poisson stability; chaotic attractor.

1. Introduction

L. Shil’nikov emphasized in [Shil’nikov, 2002] that “...it seems quite reasonable that the role of dynamical chaos orbits should be assigned to the Poisson stable trajectories,” and “...we arrive at the following problem: how can one establish the existence of the Poisson stable trajectories in the phase space of a system?”

The goal of our paper is to obtain a quasi-minimal set by inserting a generator of moments of discontinuities into a dissipative system. That is, we aim to apply dynamical synthesis [Brown et al., 1992, 1993], which is a general technique for constructing dynamical systems with desired properties.

We believe that this approach makes a strong impact on applications, since one can investigate controllability of chaos [Fradkov, 2007; Otto et al., 1990] based on similar properties of the generator-function, which are already known or can be developed, if needed. For example, it provides a tool for supporting the given degree of nonregularity, which is important for cardiac rhythm [Garfinkel et al., 1992]. Another issue of relevance to the paper is the nonlinear dynamics of electrical circuits and mechanical models [Atherton, 1982; Elwakil, 2002; Tsypkin et al., 1964], which convert discrete data into continuous output.

The main focus of our investigation is the following special initial value problem

\[z'(t) = Az(t) + f(z) + v(t, t_0), \]

\[z(t_0) = z_0, \]

where \(z \in \mathbb{R}^n, t \in \mathbb{R}, i \in \mathbb{Z}, \) \(R \) and \(Z \) are sets of all real numbers and integers respectively,

\[v(t, t_0) = \begin{cases} m_0 & \text{if } \zeta_i(t_0) < t \leq \zeta_{i+1}(t_0), \quad i \in \mathbb{Z}, \\ 0 & \text{if } \zeta_{i-1}(t_0) < t \leq \zeta_i(t_0), \quad i \in \mathbb{Z}, \end{cases} \]

where \(m_0 \in \mathbb{R}^n \) is a nonzero vector. Cantor set \(\Lambda \subset [0,1] \) and the strictly increasing sequence \(\zeta(t_0) = \{\zeta_i(t_0)\}, i \in \mathbb{Z}, \) \(i \leq \zeta_i(t_0) \leq i+1, \) will be described in the next section. The function \(f \) satisfies the Lipschitz condition with a positive constant \(L, \) \(A \) is an \(n \times n \) constant real valued matrix, and there exist positive numbers \(N, \alpha, \) such that \(\|e^{At}\| \leq Ne^{-\alpha t}, t \geq 0. \)

It is worth mentioning that we can consider other types of equations to obtain similar results. For instance, one may assume that function \(f \) depends on \(t \) and has discontinuities of the first kind at points of \(\zeta(t_0). \)
For a fixed $t_0 \in \Lambda$, system (1) is a differential equation with discontinuous right-hand side [Filippov, 1988] of a specific type where discontinuities occur on vertical planes in the (t, z)-space.

In what follows, we use the definition of solutions formulated in [Wiener, 1993] (see, also, [Akhmet, 2007]).

A function $z(t), z(t_0) = z_0$, is a solution of (1) on \mathbb{R} if: (i) $z(t)$ is continuous on \mathbb{R}; (ii) the derivative $z'(t)$ exists at each point $t \in \mathbb{R}$ with the possible exception of the points $\zeta(t_0)$, where left-sided derivatives exist; (iii) Equation (1) is satisfied on each interval $[\zeta(t), \zeta(t+1)], t \in \mathbb{Z}$.

It can be easily verified that problem (1) has a unique solution $z(t, t_0, z_0), t \in \mathbb{R}$, for each $t_0 \in \Lambda, z_0 \in \mathbb{R}^n$.

The solution $z(t) = z(t, t_0, z_0)$ satisfies the following integral equation

$$z(t) = e^{A(t-t_0)}z_0 + \int_{t_0}^{t} e^{A(t-s)}[f(z(s)) + v(s, t_0)] \, ds,$$

In the sequel, we assume that $\sup_{\mathbb{R}} |f(z)| = M_0 < \infty, NL < \alpha$. Fix a sequence $\zeta(t_0), t_0 \in \Lambda$. Using the standard technique, one can verify that $z(t)$ is a solution of (1), bounded on \mathbb{R} if and only if it satisfies the equation

$$z(t) = \int_{-\infty}^{t} e^{A(t-s)}[f(z(s)) + v(s, t_0)] \, ds,$$

and for each sequence $\zeta(t_0), t_0 \in \Lambda$, there exists a unique solution $z(t, \zeta(t_0))$ bounded on \mathbb{R} and all these solutions are placed in the tube with radius $M = M_0[1 + (N/\alpha - N)L]$, $t \in \mathbb{R}$. Moreover, if $z(t, t_0, z_0)$ is a solution of (1), then one can obtain by Gronwall-Bellman Lemma that

$$\|z(t, t_0, z_0) - z(t, \zeta(t_0))\| \leq \sup_{\mathbb{R}} |z_0 - z(t, \zeta(t_0))| e^{\alpha |t-t_0|}.$$

That is, the bounded solution $z(t, \zeta(t_0))$ attracts all solutions of (1) with the same initial moment $t_0, t_0 \in \Lambda$.

Let (X, ρ) denote a metric space and T be either \mathbb{R} or \mathbb{Z}. Consider a set \mathcal{S} of functions defined on T. An element $\phi(t) \in \mathcal{S}$ is called a motion if it is a solution of either a differential or a discrete equation. We say that a motion $\phi(t) \in \mathcal{S}$ is positively Poisson stable (P_s stable) if for each $\gamma \in T$ there exist two sequences $\beta_\gamma, E_\gamma \in T$ with $\beta_\gamma, E_\gamma \to \infty$ such that

$$\lim_{n \to \infty} \sup_{-E_\gamma < t < E_\gamma} \rho(\phi(\beta_\gamma + t), \phi(\gamma + t)) = 0.$$

A motion $\phi(t) \in \mathcal{S}$ is said to be negatively Poisson stable (P_n stable) if for each $\gamma \in T$ there exist two sequences $\beta_n, E_n \in T$ with $\beta_n, E_n \to \infty$ such that

$$\lim_{n \to \infty} \sup_{-E_n < t < E_n} \rho(\phi(-\beta_n - t), \phi(\gamma + t)) = 0.$$
Introduce the maps $B_j : \Sigma^2 \to \Sigma_2$, $i \in \mathbb{Z}$, such that $B_0(s) = (s_0, s_1, \ldots)$. From the method of construction of s^*, it follows that the following assertion is valid.

Lemma 2.1

(1) For a fixed $j \in \mathbb{Z}$ there exist two sequences of integers k_n, l_n with $k_n, l_n \to \infty$, and
\[
\lim_{n \to \infty} \max_{s \in \Sigma_2} \{B_{k_n + i}(s^*), B_{j + i}(s^*)\} = 0.
\]

(2) For a fixed $j \in \mathbb{Z}$ there exist two sequences of integers k_n, l_n with $k_n, l_n \to \infty$, and
\[
\lim_{n \to \infty} \max_{s \in \Sigma_2} \{B_{k_n + i}(s^*), B_{j + i}(s^*)\} = 0.
\]

(3) For each $s \in \Sigma_2$ and $j \in \mathbb{Z}$ one can find sequences of integers k_n, l_n with $k_n, l_n \to \infty$, and
\[
\lim_{n \to \infty} \max_{s \in \Sigma_2} \{B_{k_n + i}(s^*), B_{j + i}(s^*)\} = 0.
\]

(4) For each $s \in \Sigma_2$ and $j \in \mathbb{Z}$ one can find sequences of integers k_n, l_n with $k_n, l_n \to \infty$, and
\[
\lim_{n \to \infty} \max_{s \in \Sigma_2} \{B_{k_n + i}(s^*), B_{j + i}(s^*)\} = 0.
\]

Assume that there exist a homeomorphism S between Σ_2 and a set $\Lambda \subset [0, 1]$, and a map $h : \Lambda \to \Lambda$ such that $S h = \sigma \circ S$. That is, h and σ are topologically conjugate. It is known that Σ_2 and Λ are Cantor sets [Wiggins, 1990] and they are compact. One of the most popular examples of the map h is the logistic map $\mu(1 - x), \mu > 4$, considered on a subset of $[0, 1]$ [Robinson, 1995].

For every $t_0 \in \Lambda$, one can construct a sequence $\kappa(j)_{0}$ of real numbers $\kappa_i, i \in \mathbb{Z}$, in the following way. If $i \geq 0$, then $\kappa_{i+1} = h(\kappa_i)$ and $\kappa_0 = t_0$. Let us show how the sequence is defined for negative i. Denote $s^0 = (s_0, s_1, \ldots) = S(t_0)$. Consider elements $\lambda = (0, s_0, s_1, \ldots), \pi = (1, s_0, s_1, \ldots) \in \Sigma_2$ such that $\sigma(\lambda) = \sigma(\pi) = s^0$ and $\lambda = S^{-1}(\lambda), \pi = S^{-1}(\pi)$. The homeomorphism implies that $h(\lambda) = h(\pi) = t_0$. The set $h^{-1}(t_0)$ may not consist of less than two elements $t_{-n}, t_n \in \Lambda$. Each of these two values can be chosen as $\kappa_{-n}(t_0)$. Obviously, one can continue the process to $-\infty$ by choosing always one element from the set h^{-1}. We have finally the construction of the sequence, and moreover, it is proved that $\kappa(t_0) \subset \Lambda, \kappa(t_0) = \{\kappa_i(t_0), i \in \mathbb{Z}\}$. Thus, infinitely many sequences $\kappa(t_0)$ can be constructed for a given t_0. However, each of this type of sequence is unique for increasing i. Fix one of the sequences and define a sequence $\xi(t_0) = \{\xi_i\}, \xi_i = i + \kappa_i, i \in \mathbb{Z}$.

If we denote by H the set of all such sequences $\{\xi_i\}, i \in \mathbb{Z}$, then a multivalued functional $w : \Lambda \to H$ is defined. In our paper, the sequence $\xi(t_0)$ in (1) is considered to be a value of $w(t_0)$.

The above discussion shows that there exists a one-to-one correspondence between Σ_2 and H. Denote by $\xi(t^*)$ the sequence which corresponds to s^*. Then homeomorphism S and Lemma 2.1 imply that the following assertion is correct.

Theorem 2.1. $H = \Omega_{\xi(t^*)} = A_{\xi(t^*)}$.}

3. The Quasi-Minimal Set

Denote $\mathcal{CB} = \{z(t, \xi(t^*)) : \xi(t_0) \in \Pi\}$. We shall show that the set \mathcal{CB} is an attractor for all solutions of (1), is a quasi-minimal set.

Theorem 3.1. \mathcal{CB} is the quasi-minimal set.

Proof. Consider the sequence $\xi(t^*)$, which has been defined in Theorem 2.1, and the solution $z(t, \xi(t^*))$ of (1). We shall show that the solution is P_{ξ} stable by considering $\gamma = 0$. The proof is very similar for any other $\gamma \in \mathbb{R}$. Fix a positive ϵ. Moreover, fix a positive ϵ_1, whose dependence on ϵ will be described below. From Theorem 2.1, it follows that there exist sufficiently large natural numbers j and m such that $|z(j + m(t^*) - \xi(t^*))| < \epsilon_1$ if $-j < i < j$. For the sake of simplicity, we shall write ξ_i instead of $\xi(t^*)$.

We have for $t \geq -j$:
\[
z(t, \xi(t^*)) = e^{A(t)(\xi(t^*))}z(\xi_i, \xi_i(t^*)) + \int_{\xi_i} f(e^{A(t)(\xi_i(t^*))}) + v(s, \xi_i)ds,
\]
and
\[
z(t + \xi_{j+m} - \xi_i) = e^{A(t)(\xi_i(t^*))}z(\xi_{j+m} - \xi_i(t^*))
+ \int_{\xi_i} f(e^{A(t)(\xi_{j+m} - \xi_i) - \xi_i(t^*))} + v(s, \xi_i)ds
+ e^{A(t)(\xi_i(t^*))}z(\xi_{j+m} - \xi_i(t^*))
+ \int_{\xi_i} f(z(s + \xi_{j+m} - \xi_i(t^*)) + v(s, \xi_i)ds.
\]
Subtracting the last expression from the previous one, we obtain that
\[
\|z(t, \zeta(t^*)) - z(t + \zeta_{j+m} - \zeta_j)\| \\
\leq 2MNe^{-\alpha(t-\zeta_j)} \\
+ \int_{\zeta_j}^{t} NLe^{-\alpha(t-s)}\|z(s, \zeta(t^*)) - z(s + \zeta_{j+m} - \zeta_j)\|ds \\
+ \int_{\zeta_j}^{t} Ne^{-\alpha(t-s)}e_1\|m_0\|ds.
\]

Next, we denote \(u(t) = \|z(t, \zeta(t^*)) - z(t + \zeta_{j+m} - \zeta_j)\|\) and apply the following assertion.

Lemma 3.1 [Barbashin, 1970]. Let \(u(t), f(t)\) be non-negative functions integrable over the interval \(t_0 \leq t \leq t_0 + T\) and \(K\) be a positive constant. If the inequality
\[
u(t) \leq f(t) + K \int_{t_0}^{t} v(s)ds, \quad t_0 \leq t \leq t_0 + T,
\]
is fulfilled then the following expression holds
\[
u(t) \leq f(t) + K \int_{t_0}^{t} v(t-s) f(s)ds.
\]

Thus, we have
\[
\|z(t, \zeta(t^*)) - z(t + \zeta_{j+m} - \zeta_j)\| \\
\leq N\epsilon_1\|m_0\|\left(1 + \frac{1}{\alpha - NL}\right)
\]
\[
+ \frac{\alpha[(NL-1)(2M\alpha - \epsilon_1\|m_0\|)]}{\alpha L}\|z(t, \zeta(t^*)) - z(t + \zeta_{j+m} - \zeta_j)\|.
\]

On the basis of the last inequality, one can see that \(\|z(t, \zeta(t^*)) - z(t + \zeta_{j+m} - \zeta_j)\| < \epsilon\) if \(t \in (-E, E)\), where \(E = j/2, j\) is sufficiently large, and \(\epsilon_1\) is a sufficiently small positive number. The number \(\zeta_{j+m} - \zeta_j\) is as large as \(m\). Thus, we have proved that the solution is \(P\) stable. Applying Theorem 2.1 again, one can show that \(z(t, \zeta(t^*))\) is \(P\) stable and \(CB = \Omega_{\alpha}(\epsilon, \|\mu\|) = A_{\epsilon}(\mu, \|\mu\|),\) which completes the proof.

4. A Simulation Result

Consider the sequence \(\zeta_i = i + \kappa_i, \kappa_i = 4\kappa_{i-1}(1 - \kappa_{i-1}), \kappa_0 = t_0, \kappa_i \in [0, 1], i \geq 0\), and the following system
\[
x'' + 2x' + 1.5x = \sin y, \\
y' = -3y + v(t, t_0),
\]
where \(v(t, t_0)\) is a scalar pulse function with \(m_0 = 1\). The second equation is a drive equation and the first one, the pendulum equation. Using new variables \(x_1 = x, x_2 = x', x_3 = y\), one can reduce (2) to the system
\[
x'_1 = x_2, \\
x'_2 = -1.5x_1 - 2x_2 + \sin x_3, \\
x'_3 = -3x_2 + v(t, t_0).
\]

![Fig. 1. The chaotic attractor by a stroboscopic sequence \((x_1(n), x_2(n), x_3(n)), 1 \leq n \leq 75,000\), is observable.](image-url)
One can easily verify that all eigenvalues of the matrix of coefficients have negative real parts. Fix $t_0 = 12/17$ and take a solution $(x_1(t), x_2(t), x_3(t))$ of the last system with the initial condition $x_1(t_0) = 0.02, x_2(t_0) = -0.025, x_3(t_0) = -0.02$. In Fig. 1 the chaotic attractor is shown by using points $(x_1(n), x_2(n), x_3(n))$, $n = 1, 2, 3, \ldots, 75,000$, in $x_1-x_2-x_3$-space.

Remark 4.1. Using the technique of the present paper, we shall develop shadowing theorems [Anosov, 1967; Bowen, 1975; Hammel et al., 1987] for system (1) in future investigation.

Acknowledgments
The author wishes to express his sincere gratitude to the referee for the valuable suggestions, which helped to improve the paper.

The author thanks D. Aruğaslan and C. Büyükadılah for technical assistance.

References