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Abstract Non-autonomous grazing phenomenon is
investigated through periodic systems and their solu-
tions. The analysis is different than for autonomous
systems in many aspects. Conditions for the existence
of a linearization have been found. Stability of a peri-
odic solution and its persistence under regular pertur-
bations are investigated. Through examples, the theo-
retical results are visualized.

Keywords Non-autonomous impulsive system ·
Grazing point · Linearization around a grazing
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1 Introduction

Vibrating systems are throughly investigated in the lit-
erature and there can be found many applications in
mechanics, electronics and medicine [1–7]. The stabil-
ity of the periodic solutions of such systems and the
appearance of chaos became popular in the analysis
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of such systems. Then, some of the scientists keep on
analyzing such systems with impacts. The vibrating
systems which admit recurring impacts during their
motions are called vibro-impacts systems. Such sys-
tems take the attention of many scientists through his-
tory [8–35]. It is considered in two different ways. First
one is that the impact occurs whenever the vibrating
mass coincides with the barrier transversely [8–21] and
another is that the impact occurs when it coincides with
the barrier with zero velocity or tangentially [22–35].
In the literature, the point when the oscillator meets
the barrier tangentially or with zero velocity is called
grazing point. For the first type of motions, the existing
theory of the impact mechanisms are enough [12,37] to
analyze the dynamical properties around the solutions.
However, for systems with grazing the existing theory
is inappropriate for the analysis. For this reason, scien-
tists search some other conditions which facilitate the
analysis of the dynamics around grazing point and it
gets great attention for the theoretical analysis as well
as applications [22–35]. In literature, grazing is under-
stood as a particular case which makes the dynam-
ics around it complicated such as the appearance of
chaos through period adding [32]. Many investigations
are conducted on grazing, and some of them are; in
[34], the existence of periodic solution for the higher-
dimensional mechanical systems is investigated, and
in the studies [10,22,23], the authors define the graz-
ing bifurcation for the systems of differential equations
with discontinuous right-hand side and analyze the sta-
bility of periodic grazing solutions, and in [24], grazing
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is defined as a bounding case which divides the regions
with quite different dynamical behaviors and point, and
the system trajectory makes tangential contact with an
event. It is observed that by finding smallest parameter
alteration necessary to induce grazing, a basis for an
optimization technique is obtained.

In the literature, two different approaches have been
utilized to define grazing phenomenon. One of them is
that grazing is the case when a trajectory meets with
zero velocity to the surface of discontinuity [32–34].
The other is that the trajectory meets the surface of dis-
continuity tangentially [11,22,23,31]. In the present
paper, to develop theory for non-autonomous systems
with grazing points, we will take into account the com-
prehension of the authors who assert that the solutions
intersect the surface of discontinuity tangentially at
the grazing point. Our way of investigation is maxi-
mally close to the way of investigations in ordinary
differential equations. In the paper [36], we present
a new approach for the analysis of grazing phenom-
enon which is based on the fundamental definitions of
the papers [10,11,22,23,31], but from researches we
obtain a different procedure such as constructing a lin-
earization by means of the near solutions around the
periodic solution. This idea is effective not only for
autonomous systems with impacts but also for other
systems with discontinuities. In the present paper, in
the light of these ideas, we extend our results for
non-autonomous systems with impacts. This extension
requests new definitions as well as different from [36]
discussion to obtain constructive results. Our ideas is
farmoredifferent than the existing results [22–35] since
the previous results are mainly rely on the reduction of
the dynamics to an analysis through mappings. In our
case, the investigations has been done not for discrete
moments of time; they have been conducted on the all
timewhich includes the process duration. Additionally,
by harmonizing the vector field, the jump function, and
the surfaces of discontinuity, we have suppressed the
singularity which is seen in the gradient at the grazing
point in the system. Our results can be applied for var-
ious mechanical problems this approves how the way
of the analysis are useful.

Some non-autonomous systems are taken into
account through history of the grazing phenomenon.
They consist of a non-autonomous vector field with
the autonomous surfaces of discontinuity. It is the first
time in literature that the systemswith non-autonomous
surfaces are taken into account for the grazing. In this

present paper, we will take into account a special non-
autonomous systemwith the non-autonomous surfaces
of discontinuity such that the surfaces of impacts are
defined as follows t = τi (x), i ∈ Z. For such systems,
we introduce definitions such as a grazing point for
the non-autonomous system, the continuous/ discon-
tinuous grazing point, and a proper linearization for
non-autonomous impulsive systems near the periodic
solution which has grazing points constructed. More-
over, the theoretical results are supported by examples
and simulations.

The rest of the paper is divided into six parts.
The next section covers information about the non-
autonomous systems, the definitions for a grazing
point, continuous and discontinuous ones, a grazing
solution, sufficient conditions for the existence, unique-
ness of solutions of these systems, and the B equiva-
lence method which is an important tool in the analysis
of the stability of non-autonomous systems. The third
section is the motivation of the present research. In
the fourth section, we consider linearization around the
grazing periodic solution of non-autonomous systems.
The fifth one contains the examples with simulations
which support the theoretical results. The next section
covers the regular perturbations of the grazing solu-
tion, and the last one is the summary of our work and
also presents future works related with our subject of
discussion.

2 Preliminaries

Let R, N and Z be the sets of all real numbers, natural
numbers, and integers, respectively. Let G ⊂ R

n be an
open, bounded, and connected set. Introduce the fol-
lowing system of differential equations with variable
moments of impulses

x ′ = f (t, x),

Δx |t=τi (x) = Ji (x), (1)

where (t, i, x) ∈ R × Z × G, the function f (t, x) is
continuous on R × G, continuously differentiable in x
and T -periodic, i.e., f (t + T, x) = f (t, x), functions
Ji and τi (x), i ∈ Z are defined on G and continuously
differentiable on G. The following equality Ji+p = Ji

for a natural number p is valid and τi (x) has (T, p)-
property, i.e., τi (x)+T = τi+p(x) for all i ∈ Z, x ∈ G.
Denote by Ii (x) = Ji (x) + x .
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Consider a solution x(t) of (1). Denote θi , i ∈ Z,
if θi = τi (x(θi )). That is, t = θi is the moment of
the intersection of the solution x(t) with the surface
t = τi (x). Regardless, if x(t) has a discontinuity at
the moment or not, we call the t = θi the moment of
discontinuity.

Denote by∇τi (x) =
(

∂τi (x)
∂x1

,
∂τi (x)
∂x2

, . . . ,
∂τi (x)
∂xn

)
the

gradient of the function τi (x) and let 〈, 〉 be the usual
dot product. Let us introduce the main object of the
present discussion.

Definition 1 A point (θi , x(θi )), i ∈ Z, is a grazing
point if 〈∇τi (x(θi )), f (θi , x(θi ))〉 = 1. It is a continu-
ous grazing point provided I (x(θi )) = 0, otherwise it
is discontinuous one.

Definition 2 A solution x(t) of (1) is grazing if it has
a grazing point (θi , x(θi )).

Assume that (1) admits a grazing T -periodic solu-
tion Ψ (t) with discontinuity moments θi , i ∈ Z, such
that θi+p = θi + T, i ∈ Z.

Consider the system of ordinary differential equa-
tions

x ′ = f (t, x), (2)

which is a part of (1).
Let us formulate the following conditions.

(N1) For any c ∈ G, i ∈ Z, the inequality τi (c +
Ji (c)) < τi (c) is valid;

(N2) for all x ∈ G, τi (x) < τi+1(x).

In what follows, let ‖ · ‖ be the Euclidean norm, that
is for a vector x = (x1, x2, . . . , xn) in R

n , the norm is

equal to
√

x21 + x22 + · · · + x2n .

(N3) There exist positive numbers C and N with
C N < 1 such that

max
(t,x)∈R×G

‖ f (t, x)‖ ≤ C, max
x∈G

∥∥∥∂τi (x)

∂x

∥∥∥ ≤ N .

(N4) for all x ∈ G and i ∈ Z, max
0≤σ≤1

〈∂τi (x+σ Ii (x))

∂x
,

Ii (x)
〉
≤ 0.

If conditions (N1)–(N4) are fulfilled, then every
solution x(t) : I → G of (1) intersects each of the
surfaces of discontinuity t = τi (x), i ∈ Z, at most
once [37].

A function φ(t) : R → R
n, n ∈ N, is from the

set PC(R, θ) if it : (i) is left continuous, (ii) is contin-
uous, except, possibly, points of θ , where θ is the set
of discontinuity points of the function φ(t) and it has
discontinuities of the first kind at that points.

A function φ(t) is from the set PC1(R, θ) if φ(t),
φ′(t) ∈ PC(R, θ), where the derivative at points of θ

is assumed to be the left derivative. If φ(t) is a solution
of (1), then it is required that it belongs to PC1(R, θ)

[37].
Denote by [̂a, b], a, b ∈ R, the interval [a, b],

whenever a ≤ b and [b, a], otherwise. Let x1(t) ∈
PC(R+, θ1), θ1 = {θ1i }, and x2(t) ∈ PC(R+, θ2),
θ2 = {θ2i }, be two different solutions of (1).
Definition 3 The solution x2(t) is in the ε-neighbor-
hood of x1(t) on the interval I if

* |θ1i − θ2i | < ε for all θ1i ∈ R;
* the inequality ||x1(t) − x2(t)|| < ε is valid for all
t, which satisfy t ∈ R \ ∪θ1i ∈R(θ1i − ε, θ1i + ε).

The topology definedwith the help of ε-neighborhoods
is called the B-topology [37]. One can easily see that
it is Hausdorff and it can be considered also if two
solutions x1(t) and x2(t) are defined on a semi-axis or
on the entire real axis.

To analyze the system with variable moments of
impulses is hard. To make our investigations easier, an
important method is presented in [37] which reduces
the systemswith variablemoments of impulses to those
with fixedmoments of impulses. The systemwith fixed
moment of impulses is named a B-equivalent system
to the system with variable moments of impulses. In
order to construct a B-equivalent system near the inte-
gral curve ofΨ (t),wewill consider the following way.

Consider a point (θi , x) ∈ R × G with a fixed ξ,

on the periodic solution with a fixed i ∈ Z. Let ξi =
ξi (x) be the meeting moment of the solution x(t) =
x(t, θi , x) of (2) with the surface of discontinuity t =
τi (x). Additionally, assume that the solution x1(t) =
x(t, θi , x(θi )) of (2) exists on [̂θi , ξi ]. The map W :
x → x1(ξ) can be constructed as

Wi (x) =
ξi∫

θi

f (u, x(u))du + Ji (x +
ξi∫

θi

f (u, x(u))du)

+
θi∫

ξi

f (u, x1(u))du. (3)
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Let us take into consideration the following sys-
tem of differential equations with fixed moments of
impulses

y′ = f (t, y),

Δy|t=θi = Wi (y), (4)

which is B-equivalent in G ⊂ R
n to (1). It is easy

to see that Ψ (t) is also a solution of (4) as well. In
the following part, we will consider the system (4) to
construct a linearization system around Ψ (t).

Since of the way of construction of Wi (x) systems
(1) and (4) are B-equivalent in the neighborhood of
Ψ (t). That is, if x(t) : U → G is a solution of (1),
then is coincides with a solution y(t) : U → G when
y(t0) = x(t0), for t0 ∈ U \ ∪i∈Z [̂θi , ξi ]. Particularly,
x(θi ) = y(θi+), x(ξi ) = y(ξi ), i f θi > ξi , x(θi ) =
y(θi ), x(ξi+) = y(ξi ), i f θi < ξi .

3 Motivation

Vibro-impact system is the term used to present a
system which is driven in some way and which also
exhibits an intermittent or continuous sequence of con-
tacts with limiting constraints of the motion. Vibro-
impact systems involve multiple impact interactions in
the form of jumps in the state space. The dynamics and
properties of vibro-impact systems and specifications
of nonlinear phenomena with discontinuity have been
investigated in the literature for decades [8–13,16,19–
21,23–27,39]. Comparedwith a single impact, the non-
linear dynamics of vibro-impact systems aremore com-
plicated. The trajectories of such systems have discon-
tinuities, which are caused by the impacts, in phase
space. Although the presence of nonlinearity and dis-
continuity complicates the dynamic analysis of such
systems, they canbe described theoretically andnumer-
ically with discontinuities in good agreement with real-
ity. Such systems with impacts appear in a wide variety
of engineering applications. The operation of vibra-
tion hammers, impact dampers, inertial shakers, pile
drivers,milling and formingmachines, and other vibro-
impact systems is based on the impact action for mov-
ing bodies [8–10,12,13,16,19–21,26]. Machines with
clearances, heat exchangers, steam generator tubes,
fuel rods in nuclear power plants, rolling railway wheel
set, piping systems, granular gases, gear transmissions,

andother such systemsperform impacts. In thesemech-
anisms, there are two types of impacts: a) when one
of the colliding parts is motionless; b) there is no sta-
tionary colliding parts. Mostly, the first case is consid-
ered in literature. But the second one can also be dis-
cussed, if the law of motions for some of the parts are
known [9,18,21]. These vibro-impact systems aremost
difficult for dynamical analysis. Our present results
are developed for their research, since they are non-
autonomous, not necessary in differential equations and
equations of impacts, but in surfaces of discontinuity.
Inmechanics, themost famousmodel is a ball bouncing
on a moving table [9,18,21], and it is not surprising,
that namely for this mechanism chaos presence was
explored [15]. In this part of the paper, wewill consider
the model, developed with two vibrating tables and a
grazing point, to exhibit motivation for our research.

We will take into account a bouncing bead model
whichmovesbetween twovibrating tables. Themotions
of the bottom table and above table are governed by
X1(t) = sin(t) and X2(t) = 50 + sin(t + 1), respec-
tively. In the remaining part of the example denote by
x = (x1, x2). Themotion of the bead can be formulated
mathematically by using the differential equation with
non-fixed moments of impulses

x ′
1 = x2,

x ′
2 = −9.8,

Δx2|t=τi (x) = −(1 + R1)x2,

Δx2|t=ηi (x) = (1 + R2)[cos(τ2(x) + 1) − x2], (5)

where τi (x) = arcsin(x1) + 2π i, ηi (x) = arcsin(x1 −
50) − 1 + 2π i, R1 = 1 and R2 = 0.9

Consider a solution Ψ (t) of system (5) which
starts the motion with initial value (ζ1, Ψ (ζ1)) =
(π
2 , 1, 9.8π). It can be shown numerically that the solu-

tion is periodic. The integral curve of the solution is
seen in Fig. 1. One can get

〈∇τ0(Ψ (ζ1)), f (ζ1, Ψ (ζ1)〉
= 〈(∂τ0(Ψ (ζ1))

∂x1
,
∂τi (Ψ (ζ1))

∂x1
), (x20 ,−9.8)〉

= 〈( 1√
1 − (x10)

2
, 0), (x20 ,−9.8)〉

= 〈(1, 0), (9.8π,−9.8)〉 = 9.8π �= 1.

Thus, at the point the solution meets with the sur-
face of discontinuity t = τi (x) transversally. The solu-
tion meets the surface of discontinuity t = ηi (x) at
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Fig. 1 The green curve is the solution of (5) which starts at the
point (π/2, 0.8, 32.2876) and the blue one is the grazing periodic
solution. (Color figure online)

(ζ2, Ψ (ζ2)) = (4.63127, 49.33, 0.795), and touches it
with the same velocity as the surface has.

The integral curve is tangential to the surface, since

〈∇η0(Ψ (ζ2)), (Ψ2(ζ2),−9.8)〉

=
〈(

1√
1 − (Ψ1(ζ2)−50)2

,0

)
, (Ψ2(ζ2),−9.8)

〉
=1.

Furthermore, there is no jump at the moment. Thus, we
can conclude that, (4.63127, 49.33, 0.795), is a contin-
uous grazing point. We have obtained numerically that
the periodic solution is unstable. It is observed from
Fig. 1.

4 Differentiability of the solutions

In this part of the paper, we will analyze the differential
dependenceof solutions on initial conditions for the dif-
ferential equations with variable moments of impulses
with emphasis on grazing points.

Denote by another solution x̄(t) = x(t, t0, x0 +
Δx), Δx = (ξ1, ξ2, . . . , ξn), of (1) and ηi , i ∈
Z the moments of discontinuity of x̄(t). Denote by
B((t0, x0), δ) ⊂ R × R

n with center (t0, x0) and with
a radius δ.

The solution x(t) is B-differentiable with respect to
x j
0 , j = 1, 2, . . . , n, if there exist functions u1i (t) ∈

PC1([t0, T ], θ), {θi }i=1,2,...,k and constants νl
1i , l =

1, 2, . . . , k such that if (t0, x0+Δx) ∈ B((t0, x0), δ)∩
G for a sufficiently small positive δ, then:

(A) there exist constants νi j , i ∈ Z, such that

θl − ηl =
n∑

i=0

νl
1iξi + o(‖ξ‖), (6)

where l = 1, 2, . . . , k;
(B) for all t /∈ (̂θi , ηi ], i = 1, 2, . . . , k, the follow-

ing equality is satisfied

x̄(t) − x(t) =
n∑

i=0

u1i (t)ξi + o(‖ξ‖), (7)

where u1i (t) ∈ PC([t0, T ], θ), i=1, 2, . . . , n.
The pair {u1i (t), {νl

1i }} is said to be a
B-derivative of x(t) with respect to initial con-
ditions.

Becauseof the complexity of analysis,which appears
due to the grazing phenomenon, we will only discuss
the linearization for periodic solutions.

The object of this section is to find conditions for the
smoothness of the grazing solution. In other words, for
the existence of linearization around a grazing periodic
solution Ψ (t) with a period T, and with discontinuity
moments θi , i = 1, 2, . . . , p, on the interval [0, T ].

We will construct the variational system in a neigh-
borhood of the periodic solution Ψ (t) as follows:

u′ = A(t)u,

Δu|t=θi = Di u(θi ), (8)

where the matrix A(t) ∈ R
n×n of the form A(t) =

∂ f (t,x)
∂x |x=Ψ (t). The matrices Di , i = 1, . . . , n will

be defined in the remaining part of the paper. Solu-
tions of the variational Eq. (8) are the B-derivatives,
(u j (t)), j = 1, 2, . . . , n.Wewill call the second equa-
tion in (8) a linearization at discontinuity moments,
θi , i ∈ Z. If the near solution meets the surfaces
transversally, the differentiability properties of such
systems are investigated widely in [37]. In the remain-
der, we will give a brief explanation for the transversal
meeting and we seek to determine some sufficient con-
ditions for the existence of the linearization around the
grazing points.

4.1 Linearization at a transversal point

In this subsection, our aim is to give information about
the matrices Di and the gradient ∇θi (x) if the dis-
continuity point (θi + jT, Ψ (θi + jT )), j ∈ Z, is a
transversal one which means ∇τi (Ψ (θi + jT )) f (θi +
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jT, Ψ (θi + jT )) �= 1. In the followingpart of the paper,
we will consider the discontinuity points, for j = 0,
(θi , Ψ (θi )), as discontinuity moments. The lineariza-
tion in these circumstances is described in [37].

Fix a transversal discontinuity point (θi , Ψ (θi )),

i = k + 1, . . . , p. The following equation is driven
by considering the equation θi (x) = τi (x(θi (x))), [37]

∇θi (Ψ (θi )) = ∇τi (Ψ (θi ))U (θi )

1 − ∇τi (Ψ (θi )) f (θi , Ψ (θi ))
, (9)

whereU (t), is a fundamentalmatrix ofu′= fx (t, x(t))u
with U (κ) = I, where I is n × n identity matrix.

By taking into account derivative of the B-map
defined by (3) with respect to x , we can determine the
matrix Di as

Di =
[

∂Wi (Ψ (θi ))

∂x01
,
∂Wi (Ψ (θi ))

∂x02
, . . . ,

∂Wi (Ψ (θi ))

∂x0n

]
,

(10)

where the expression ∂Wi (Ψ (θi ))

∂x0j
denotes the derivative

of the map Wi (x) with respect to j th component of
initial value, x0j , j = 1, 2, . . . , n and calculated at the
point x = Ψ (θi ).

4.2 Linearization at a grazing point

Assume that the periodic solution Ψ (t) intersects the
surface of discontinuity t = τl(x) at the moment, t =
θl , 1 ≤ l ≤ k, tangentially. That is, (θl + jT, Ψ (θl +
jT )), j ∈ Z, are grazing points of the periodic solution
Ψ (t).

Let us consider the grazing point (θl , Ψ (θl)). In the
remaining par of the subsection, we will compute the
derivatives of functions θl(x) and Wl(x), at the graz-
ing point which are described in the previous part of
the paper. One can observe from the equality (9), there
exists two different possibility for the ∇θl(x), first is
at least one of the coordinate of the gradient ∇θl(x) is
infinity or all its coordinates are finite numbers. The
complexity arises when at least one of the coordinate is
infinity. It can be observed that the singularity is caused
by the vector field and the surface of discontinuity. In
order to handle with the complexity, the following con-
ditions should be asserted.

(A1) A grazing point is isolated.
(A2) The matrix Wi (x) is a differentiable at (θl ,

Ψ (θl)).

In the present paper, we consider the case when the
singularity appears at gradient ∇θl(x) at the grazing
point (θl , Ψ (θl)) and we consider that how the impact
function eliminate the singularity of the gradient at the
grazing point. To suppress the singularity, we harmo-
nize the interaction of the impact law, the vector field
and the surface of discontinuity such that it validates
the condition (A2). If these components do not work
in an harmony, some complex situations may appear
[10,14,32,35]. This complex situations are not taken
into account in our paper.

4.3 Stability of the grazing periodic solution

Assume that the linearization of θl(x) at the grazing
point, (θl , Ψ (θl)), exists in the above defined sense
for each l = 1, 2, . . . , k. Because of the previous dis-
cussion, the gradient, ∇θl(x), depends on the solution
x1(t) = x(t, t0, x0+Δx) of (1), neighbor toΨ (t),with
small ‖Δx‖.

Let us formulate one of them. Other constructive
conditions will be investigated in our future papers.

(N5) For each Δx ∈ R
n, the linearization system

around Ψ (t) is

u′ = A(t)u,

Δu|t=θi = Di u, (11)

such that Di+p = Di .

The following assertions can be verified in the way
of Theorem 6.1.1 in [37].

Theorem 1 Assume that conditions (N1)–(N5) as well
as the assumptions (A1) and (A2) are valid. Then,
the solution Ψ (t) of (1) for each finite interval [0, a],
a > 0, has B- derivatives with respect to initial con-
ditions, (u j (t)), which satisfies the variational Eq.
(8) with initial values e j = (0, 0, . . . , 1︸ ︷︷ ︸

j

, 0, . . . , 0),

j = 1, 2, . . . , n.

The system (11) is the variational system around
the grazing periodic solution Ψ (t). One can derive
the matrix of monodromy, U j (T ), and the correspond-
ing Floquet multipliers ρi , i = 1, 2, . . . , n. The next
assumption is needed to verify the stability of the peri-
odic solution, Ψ (t).

(N6) |ρi | < 1, i = 1, 2, . . . , n.
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Theorem 2 Assume that conditions (N1)–(N6) and
assumptions (A1) and (A2) are valid. Then, T -periodic
solution Ψ (t) of (1) is asymptotically stable.

The last theoremcan be proved similarly to Theorem
7.2.1 in [37].

We will exhibit some examples to actualize our the-
oretical results in the following section.

5 Examples

Example 1 Consider the following one-dimensional
system

x ′ = 4 − sin(t),

Δx |t=τi (x) = −4π + 1 − 17

16
x2, (12)

where τi (x) = 1
4 arctan(x)+ iπ, i ∈ Z and the domain

is G = (−16, 16).
It is easy to verify by substituting (12) that the fol-

lowing expression,

Ψ (t) =
{
0 if t = 0,
4t + cos(t) − 4π + 1 if t ∈ (0, 1], (13)

defines a π -periodic solution of (12). The solution is
simulated in Fig. 2.

For the point (ζ1, Ψ ((ζ1))) = (0, 0), one can derive
the following equality 〈∇τ0(Ψ ((ζ1))), f (ζ1, Ψ ((ζ1)))〉
= 〈 14 , 4〉 = 1. That is, (ζ1, Ψ ((ζ1))) = (0, 0) is a
grazing point. Denote the grazing point by (t∗, x∗) =
(0, 0).

The periodic solution Ψ (t) has exactly one discon-
tinuity point (ζ1, Ψ ((ζ1))) = (0, 0) in the period inter-
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Fig. 2 Theblue curves correspond to the periodic solution,Ψ (t),
of system (12) and red ones are the surfaces of discontinuity,
t = τi (x), i = 0, 1, 2, . . . , 5. (Color figure online)

val [0, π), which is a grazing point. Our aim in this
example is to verify that the solutions of (12) meets
the discontinuity surfaces exactly once and derive the
linearization for (12) around the grazing periodic orbit,
Ψ (t). The discontinuity moments t = iπ, i ∈ Z, are
also grazing.

Let us verify the conditions (N1)–(N4). For any
x̃ ∈ G, and i ∈ Z, because τi (x) is increasing
function and x̃ > x̃ − 4π + 1 − 17

16 x̃2, it is true
that τi (x̃ − 4π + 1 − 17

16 x̃2) < τi (x̃). This vali-
dates the condition (N1). It is apparent that (N2) is
also true. There exist positive numbers N = 1/4
C = 4, with the inequality C N < 1, which is true
for all point in the domain G except the grazing points
(iπ, 0), i ∈ Z. The differentiability in the grazing
point will be expressed in details further. The follow-
ing ones can be estimated as max(t,x)∈I×G ‖ f (t, x)‖
= max(t,x)∈R×G ‖4− sin(t)‖ ≤ 4,maxx∈G ‖ ∂τi (x)

∂x ‖ =
maxx∈G ‖ 1

4(x2+1)
‖ ≤ 1

4 . So, (N3) is verified. For all x ∈
G and i ∈ Z, we obtain that max0≤σ≤1〈 ∂τi (x+σ Ii (x))

∂x ,

Ii (x)〉 = max0≤σ≤1〈 1
1+(x+σ(−4π−1− 17

16 ))2
,−4π − 1 −

17
16 〉 ≤ 0. Thus verifies condition (N4).

Now, we will continue with the linearization at the
point (ζ1, Ψ ((ζ1))) = (0, 0). The grazing point is iso-
lated as well. First, consider a near solution of (12)
x̄(t) = x(t, 0,Δx) to Ψ (t), which meets the surface
τ0(x) = 1

4 arctan(x), at the point ( 14 arctan(x̄), x̄). Con-
sidering derivative of (3) with respect to a solution of
(12) near to the periodic solution, we obtain that

∂Wi (x)

∂x
=

θi (x)∫

ξi

∂ f (u, x0(u))

∂x

∂x0(u)

∂x
du

+ f (θi (x), x0(θi (x)))
∂θi (x)

∂x

+ ∂ Ji (x)

∂x

(
1 +

θi (x)∫

ξi

∂ f (u, x0(u))

∂x

∂x0(u)

∂x
du

+ f (θi , x0(θi (x)))
∂θi

∂x

)

+
ξi∫

θi

∂ f (u, x1(u))

∂x

∂x1(u)

∂x
du

− f (θi (x), x1(θi (x)))
∂θi (x)

∂x
. (14)

Substituting ( 14 arctan(x̄), x̄) to 14, we have
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∂Wi (x)

∂x
= f (θi (x̄), x0(θi (x̄)))

∂θi (x̄)

∂x
+ ∂ Ji (x̄)

∂x

×
(
1 + f (θi (x̄), x0(θi (x̄)))

∂θi (x̄)

∂x

)

− f (θi (x̄), x1(θi (x̄)))
∂θi (x̄)

∂x
. (15)

Next, wewill evaluate the derivative ∂θi (x̄)
∂x . To do it, the

formula (9) will be taken into account, and the deriv-
ative is calculated as ∂θi (x̄)

∂x = 1
4 tan2(4t̄)+2 sin(2t̄)

. It is

easy to see that as t̄ tends to zero the fraction diverges
to infinity. Moreover, it is easy to see that x̄ = x(t̄)
Thus, at the grazing point singularity appears, to cope
with the singularity, we will utilize the compliance of
vector field and the jump function, and we consider the
equality (15), and we get

∂Wi (x̄)

∂x
= 4 − sin(t̄)

4 tan2(4t̄) + sin(t̄)
− tan(4t̄)

16

(
1

+ 4 − sin(t̄)

4 tan2(4t̄)+2 sin(2t̄)

)
− 4 − 2 sin(2t̄)

4 tan2(4t̄)+2 sin(2t̄)

= − 4x̄3 + 4x̄

64x̄2 + 32 sin(0.5 tan(x̄))
, (16)

calculating above expression as x̄ tends to the grazing
point x∗ = 0, we obtain that

lim
x̄→x∗

∂Wi (x̄)

∂x
= lim

x̄→0
− 4x̄3 + 4x̄

64x̄2 + 16 sin(0.5 tan(x̄))
= Z , (17)

where Z = − 1
2 .

In order to obtain a linearization systemaround graz-
ing periodic solution Ψ (t), the differentiability of the
functions Wi (x) at the grazing point x∗ should be ver-
ified. To accomplish it, we will verify the derivative of
the function Wi (x) exists at the point x∗. The derivative
can be calculated as follows

Wix (x∗) = lim
x̄→x∗

Wi (x) − Wi (x∗)
x − x∗ , (18)

above equation can be calculated by applying mean
value theorem [38], we obtain that

Wix (x∗) = lim
x̄→x∗

∂Wi (x̄)
∂x (x − x∗) − Z(x − x∗)

x − x∗ + Z ,

(19)

where x̄ lies in the interval (x∗ − ε, x∗ + ε), for some
positive ε. By means of expressions (18) with (19) it is
easy to obtain that
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Fig. 3 The green and magenta curves are the solutions of (12)
with initial values (−π/16,−1) and (π/16, 1), respectively.
The blue one corresponds to the periodic solution Ψ (t) and the
red curves are the surfaces of discontinuity, t = τi (x), i =
0, 1, 2, . . . , 5. (Color figure online)

Wix (x∗) = Z . (20)

Then, we can conclude that the linearization exists at
the grazing point and the derivative is continuous as
well. This verifies condition (A2).

Next, we will continue to analyze the system in
Example 1. We derive the linearization for θ(x) at the
grazing point (θl , Ψ (θl)) = (0, 0), there. Thus, the lin-
earization for Ψ (t) consists of a π -periodic system,

u′ = 0,

Δu|t=π i = Du, (21)

where coefficient D, by the equality (20), is equal to
− 1

2 . Themultiplier of the variational system (21) isρ =
1
2 . It is inside the unit circle and condition (N6) holds.
The conditions (N1)–(N6) are valid, then by Theorem
2, the periodic solution Ψ (t) of (12) is asymptotically
stable. The stability of the solution, Ψ (t), is pictured
in Fig. 3 through simulations.

Example 2 In this example, we will consider the fol-
lowing system of differential equations with variable
moments of impulse actions

x ′
1 = −x1 + 4,

x ′
2 = − cos(2π t) + 1,

Δx1|t=τi (x) = −4(x1 + 0.75x21 ) − 1,

Δx2|t=τi (x) = 1 − 0.25x2, (22)

where τi (x) = 0.25x1 + i . For this system, denote
by x = (x1, x2). Let the domain of the system be
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Fig. 4 The above figure is the first component x1(t) of the peri-
odic solution,Ψ (t),with grazing points at (i, 0, 0), i = 0, 1,
. . . , 5, versus time, t and the below one is the second compo-
nent x2(t) of the periodic solution, Ψ (t), with grazing points at
(i, 0, 0), i = 0, 1, . . . , 5, versus time, t

G = {(t, x)| t ∈ R, x1 ∈ (−13, 13), x2 ∈ (−3, 3)}.
System (22) is of the type (1) with f (t, x) = (−x1 +
4, 2π sin(2π t) + 1) and Ji (x) = (−x1 − 1, 1). It is
easy to observe that f (t, x) is a 1-periodic function.

It can be easily verified that the system admits a
1-periodic solution of the form (23)

Ψ (t)

=
{

(0, 0), t = 0,
(exp(−t)(4t − exp(1)), − 1

2π sin(2π t) + t − 1), t ∈ (0, 1],
(23)

with discontinuity moments θi = i , i ∈ Z. It is easy to
determine, utilizing the equality 〈(4, 0), (0.25,−2)〉 =
1, that (θ1, Ψ (θ1)) = (0, 0, 0) is a grazing point.More-
over, by means of the periodicity of Ψ (t), we can con-
clude that all moments t = iπ, i ∈ Z, are grazing ones.
The components of periodic solution is simulated in
Fig. 4.

For ever point (x̃1, x̃2) ∈ G, the inequality 0.25(x̃1−
1) < 0.25x̃1 is true, this validates (N1). The condi-
tion (N2) is also valid because τi (x) = 0.25x1 + i <

0.25x1 + i + 1 = τi+1(x). Due to the vector field, sur-
face of discontinuity, and the jump function, it is easy

to say that every solution which meets the surface of
discontinuity in the neighborhood of the grazing peri-
odic solution Ψ (t) intersects the surface at most once.
For this reason, there is no need to check (N3).

Next, we will continue with the linearization of
the system (22) around the periodic solution Ψ (t). To
obtain it, first, we will consider the derivative of the
formula (3), then we get

∂Wi (x)

∂x01
=

θi (x)∫

ξi

∂ f (u, x0(u))

∂x

∂x0(u)

∂x
du

+ f (θi (x), x0(θi (x)))
∂θi (x)

∂x
+ ∂ Ji (x)

∂x

( [
1
0

]

+
θi (x)∫

ξi

∂ f (u, x0(u))

∂x

∂x0(u)

∂x
du

+ f (θi , x0(θi (x)))
∂θi

∂x

)
+

ξi∫

θi

∂ f (u, x1(u))

∂x

∂x1(u)

∂x
du

− f (θi (x), x1(θi (x)))
∂θi (x)

∂x
. (24)

Consider a near solution x̃(t) of (22) to Ψ (t). Assume
that near solutionmeets the surface of discontinuity t =
τi (x), at the point x̄ . Denote the meeting point by x̄ =
(x̄1, x̄2) = x̃(τi (x̄)), substituting it to (24), we have

∂Wi (x̄)

∂x
= f (θi (x̄), x̄(θi (x̄)))

∂θi (x̄)

∂x
+ ∂ Ji (x̄)

∂x

(
1

+ f (θi (x̄), x̄(θi (x̄)))
∂θi (x̄)

∂x

)

+ f (θi (x̄), x1(θi (x̄)))
∂θi (x̄)

∂x
. (25)

Substitute the function f (t, x) and the Jacobian Jx (x)

into (25), it is easy to obtain that

∂Wi (x̄)

∂x01
=

[
x̄1 + 4

− cos(2π t) + 1

]
∂θi (x̄)

∂x01

+ ∂ Ji (x̄)

∂x

([
1
0

] [
x̄1 + 4

− cos(2π t) + 1

]
∂θi (x̄)

∂x01

)

+
[
0.75x̄21 − 1 + 4
− cos(2π t) + 1

]
∂θi (x̄)

∂x01
, (26)

In order to evaluate above expression, we need to find
the derivative ∂θi (x̄)

∂x01
,by applying formula (9),weobtain

that ∂θi (x̄)

∂x01
= 1

x̄1
. It is easy to see that at the grazing point

the derivative is infinity. To handlewith it, wewill apply
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a special jump function and vector field. Substituting
the derivative to (26), we get

∂Wi (x̄)

∂x01
=

[−4x̄21
0

]
1

x̄1
+

[
0.2x1 0
0 −0.25

] ( [
1
0

]

+
[

x̄1 + 4
− cos(2π t) + 1

]
1

x̄1

)
=

[−0.8x1
0

]

(27)

By applying similar technique one can determine
that

∂Wi (x̄)

∂x02
=

[
0

−0.25

]
. (28)

Consequently, it is easy to determine that Wi (x) is
differentiable at (θi , Ψ (θi )) by applying similar tech-
nique in the Example 3, then it can be determined as

Di = Wix (Ψ (θi )) =
[
0 0
0 −0.25

]
.

Now, we will continue with the linearization around
the grazing periodic solution Ψ (t).

Depending on the position of the near solution, the
variational system for the periodic solution, Ψ (t), con-
sists of two subsystems. They are

u′
1 = −u1,

u′
2 = 0,

Δu|t=π i = Di u, (29)

where Di ≡
[
0 0
0 −0.25

]
, and θi = i , i ∈ Z. Sys-

tem (29) is (1, 1)-periodic. The multipliers are equal to
ρ1 = 0.3679, ρ2 = 0.75. All of them are inside the
unit circle, and by Theorem 2 one can conclude that the
periodic solution is asymptotically stable. Considering
the near solutions with initial values (−1,−3.2,−1.4)
and (−1,−2.8,−0.8), by using numerical simulation
tools, we depicted the components of the near solutions
to the components of Ψ (t) in Fig. 5.

6 Regular perturbations around grazing periodic
solution

In this chapter, we will seek the existence of the peri-
odic solution under a parameter variation. The regu-
lar perturbations are widely investigated in literature
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Fig. 5 The above figure is for the first component of the peri-
odic solution, Ψ (t). Green curves are the solution x1(t) of (22)
with initial values (−1,−3.2) and (−1,−2.8), and blue curves
are the grazing periodic solution, which have grazing points at
(i, 0, 0), i = −0, 1, 2, 3, 4, 5. The bottom one is for the second
component x2(t) of the periodic solution, Ψ (t). Green curves
are the solution x2(t) of (22) with initial values (−1,−1.4)
and (−1,−0.8). The red curves are surfaces of discontinuity
t = τi (x), i ∈ Z in both figures. (Color figure online)

[1,3,4,6,37]. The conditions (N1)–(N6) and assump-
tions (A1) and (A2) are also valid in this section.

Let Dx be a domain in R
n having compact closure,

and let μ0 be a fixed positive number. On the set

D = {(x, t, i, μ)|x ∈ Dx , t ∈ R, i ∈ Z, μ ∈ (−μ0, μ0)}.

we take into account the following system,

x ′ = f (t, x) + μφ(t, x, μ),

Δx |t=τi (x)+μηi (x,μ) = Ii (x) + μθi (x, μ), (30)

where the functions Ii , τi , θi , and ηi have continuous
partial derivatives of second order with respect to the
variables μ, x j , j = 1, 2, . . . , n, f ∈ C (0,2)(D) ∩
C (1,2)(D0), φ ∈ C (0,1,1)(D) ∩ C (1,2,2)(D0), where
D0 is the union of certain neighborhoods of the sur-
faces t = τi (x), i ∈ Z. Moreover, we will assume
that there exist a real number T > 0 and an inte-
ger p > 0 for which the following equalities are
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valid in the domain D : f (t + T, x) = f (t, x),

φ(t + T, x, μ) = φ(t, x, μ), Ii+p = Ii , θi+p = θi ,

τi+p = τi + T and ηi+p = ηi .
The generating system is of the form

x ′ = f (t, x),

Δx |t=τi (x) = Ii (x). (31)

Assume that system (31) has a periodic solution Ψ (t)
with period T and satisfies the conditions (N1)–(N5)
and assumptions (A1) and (A2) are valid. If |μ| is suf-
ficiently small, then (30) admits a T -periodic solution
which converges Ψ (t) as |μ| tends to zero.

The next examples are presented to actualize our
theoretical results and the increment of the periodic
solution is demonstrated through simulation.

Example 3 Let us consider the following one-dimen-
sional system with variable moments of impulses

x ′ = 4 − 2 sin(2t) + μφ(t, x, μ),

Δx |t=τi (x)+μκi (x,μ) = −4π − 1 − 15

16
x + μηi (x, μ),

(32)

where μ is a sufficiently small parameter. The system
is of the form (12) for μ = 0. Considering the system
(30), the functions and matrices can be determined as
A = 0, f (t) = 4 − 2 sin(2t), which is π -periodic,
Ii = −4π − 1 − 15

16 x, μ = 1
32 and ηi (x, μ) = 2(x2 −

tan2(0.04) + 15
16 x).

The generating system can be determined as in the
form

x ′ = 4 − 2 sin(2t),

Δx2|t=τi (x1) = −4π − 1 − 15

16
x . (33)

The eigenvalue of the matrix of monodromy for it can
be determined as ρ, which is not equal to one, so we
can say that the system (33) has a unique T -periodic
solution, Ψμ(t) for μ sufficiently small.

Example 4 Let us consider the following one-dimen-
sional system with variable moments of impulses

x ′
1 = −x1 + 4 + μx21 ,

x ′
2 = 2π sin(2π t) + 1 + μx22 ,

Δx1|t=τi (x) = −4(x1 + 0.75x21 ) − 1,

Δx2|t=τi (x) = 1 − 0.25x2, (34)

where μ is a sufficiently small parameter.
The generating system can be determined as in the

form

x ′
1 = −x1 + 4,

x ′
2 = − cos(2π t) + 1,

Δx1|t=τi (x) = −4(x1 + 0.75x21 ) − 1,

Δx2|t=τi (x) = 1 − 0.25x2. (35)

It is considered in Example 2 and the multipliers are
inside the unit circle, so it is easy to conclude that the
system (34) has a unique T -periodic solution, Ψμ(t)
for μ sufficiently small.

7 Conclusion

This paper includes information about non-autonomous
system with non-fixed moments of impulses whose
solutions have grazing points.By applying a novel tech-
nique, we construct a linearization system around the
grazing periodic solution. Concrete models are demon-
strated and some simulations are presented to visual-
ize theoretical results. By applying regular perturba-
tions, existence of periodic solution of these systems
are investigated and exemplified.

In the present paper we have not found linearization
around the periodic solution Ψ (t) of the model (5) for
the bouncing bead which moves between two vibrating
tables. That is, the singularity caused by the grazing can
not be suppressed by methods of our research. We sup-
pose that one can arrange the linearization by applying
perturbations [1,3] and, moreover, stabilize the peri-
odic solution if methods similar to that of the paper
[39] will be utilized.
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