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ABSTRACT

A SUBPIXEL RESOLUTION HIERARCHICAL STEREO VISION SYSTEM

U�gur Murat Lelo�glu

M. S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mete SEVERCAN

January, 1995, 73 pages.

Amulti-resolution stereo vision system, which uses normalized cross-correla-

tions and phases of band-pass �ltered images as matching primitives, is described

in this thesis. The coarse-to-�ne strategy adopted leads to more accurate results

in shorter time. At each level of the hierarchy, two modules, namely, a pixel

matching module and a thin plate module, are employed. The former module

determines the goodness of a possible match by using the correlation value and

a neighborhood support function. Only unambiguous matches are accepted as

true and these matches constrain neighbors through uniqueness and orderness

constraints. As a result, ambiguity is resolved for some of the previously ambigu-

ous matches. This spreading of constraints is iterated several times. Accepted

matches are supplied to the thin plate module which attempts a subpixel reso-

lution surface reconstruction while detecting depth discontinuities and occluded

regions. The phases of band-pass �ltered images are used as subpixel matching

primitives and intensity edges are used for detection of depth discontinuities. Be-

sides, small unmatched areas are interpolated by this module. This is not a blind

interpolation since matching of phases guide interpolation. The stereo vision sys-

tem presented is amenable to parallel implementation but is still reasonably fast

in serial simulation. The robustness of the system is demonstrated on images

from di�erent domains.

Keywords: Stereo Correspondence, Surface Reconstruction, Phase Correlation,

iii



Multiresolution Image Analysis, Surface Interpolation, Relaxation, Band-Pass

Filtering.

Science Code : 609.02.08
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�OZ

G�OZEARASI �C�OZ�UN�URL�UKTE H_IYERAR�S_IK B_IR STEREO G�OR�U�S

D_IZGES_I

U�gur Murat Lelo�glu

Y�uksek Lisans Tezi, Elektrik ve Elektronik M�uhendisli�gi Anabilim Dal�

Tez Y�oneticisi: Prof. Dr. Mete SEVERCAN

Ocak, 1995, 73 sayfa.

Bu tezde, e�slem�onc�ulleri olarak d�uzg�ulenmi�s �capraz ilintileri ve bant-ge�ciren

s�uz�ulm�u�s g�or�unt�ulerin fazlar�n� kullanan �cok-�c�oz�un�url�ukl�u bir stereo �c�oz�umleme

dizgesi sunulmaktad�r. Se�cilen kabadan-inceye stratejisi daha k�sa s�urede daha

do�gru sonu�c almay� sa�glamaktad�r. Hiyerar�sinin her bir d�uzeyinde iki b�ol�ut-

ten, g�oze-e�slem b�ol�ut�u ve ince levha b�ol�ut�unden yararlan�lmaktad�r. _Ilk b�ol�ut

olas� bir e�slemin iyili�gini ilinti de�geri ve bir yerel destek i�slevi kullanarak sap-

tar. Sadece kesin e�slemler do�gru olarak kabul edilir ve bu e�slemler kom�sular�n�

teklik ve s�ral�l�k ko�sullar� ile s�n�rlar. Sonu�cta, daha �once muallakta olan baz�

e�slemlerin belirsizli�gi �c�oz�ul�ur. Bu �sekilde ko�sullar�n yay�lmas� birka�c kez tekrar-

lan�r. Kabul edilen e�slemler, derinlik s�ureksizliklerini ve �ort�uk alanlar� bulurken

g�ozearas� �c�oz�un�url�ukte yeniden y�uzey kurmaya �cal��san ince levha b�ol�ut�une ver-

ilir. Band-ge�ciren s�uz�ulm�u�s g�or�unt�ulerin fazlar� g�ozearas� e�slem �onc�ulleri olarak

kullan�l�rken, yo�gunluk kenarlar� derinlik s�ureksizliklerini bulmak i�cin kullan�l�r.

Bunun yan� s�ra, e�slemlenmemi�s k�u�c�uk alanlar da bu b�ol�ut taraf�ndan arade-

�gerlenir. Bu k�orlemesine bir arade�gerleme de�gildir �c�unk�u fazlar�n e�slemlenmesi

arade�gerlemeye yol g�ostermektedir. Sunulan stereo arade�gerleme dizgesi ko�sut

uygulamaya uygun olmakla birlikte seri benze�simde de yeterince h�zl�d�r. Diz-

genin dayan�ml�l��g� �ce�sitli alanlardan g�or�unt�uler �uzerinde g�osterilmi�stir.

Anahtar S�ozc�ukler: Stereo Kar�s�l�kl�l�k, Yeniden Y�uzey Kurma, Faz _Ilintisi, �Cok-

�c�oz�un�url�ukl�u G�or�unt�u �C�oz�umleme, Y�uzey Arade�gerleme, Gev�seme, Bant-Ge�ciren

S�uzme.
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CHAPTER I

INTRODUCTION

Visual Perception which is an interpretation of 2-dimensional time-varying

light information on the retina to form a spatio-temporal reconstruction of 3-

dimensional world, has reached an astonishing complexity during the long course

of evolution. Although \seeing" objects seem an e�ortless and automatic task to

us, the underlying biological structure and processes are extremely complicated.

Research on visual perception is an interdisciplinary area: philosophy, cognitive

psychology, neurophysiology, psychophysics and computer science treat the sub-

ject from di�erent points of view. Computer science which �rst involved in the

subject for simulating some simple models of biological visual systems, later, pro-

ceeded in a rather independent way. By the rapid increase in computer hardware

speeds, computer vision turned its eyes onto possible applications. Although ma-

chine vision applications use the results of visual perception research, they are

not always concerned in being biologically plausible.

Among visual perception mechanisms like motion, color constancy etc,

stereopsis, which is a passive way of determining the depth using the slight dif-

ferences between the views of two eyes, draws considerable attention and much

research is devoted to this area, because it has various military and civil appli-

cations such as determining the position of a target, robot navigation, aerial car-

tography, automatic surveillance, inspection of industrial parts, building models

of objects for computer graphics, �gure-ground separation for videophones, re-

construction of human retina for diagnosis and 3-D angiography. Besides, stereo

systems are used in more comprehensive vision systems either to guide other low-

level processes or to supply information for higher-level processes such as object

recognition.

Existing stereo algorithms generally provide reliable and accurate data on

a class of scenes but fail on others. The robustness of human stereopsis is not



yet achieved by machine perception. This is partly due to de�ciency of other

visual tasks such as illusory contour detection, texture segmentation, featural

grouping, etc. Another reason may be not using information from other sources

as motion, accommodation of lenses, eye vergence, texture and others, so the

trend in stereo research is towards integrating several vision modules. However,

even in the absence of such cues, man-made systems perform worse than human,

so there are more to do to improve stereo algorithms alone.

1.1 The Aim of the Thesis

The aim this thesis is to develop a robust stereo system that will work suc-

cessfully on a large variety of images. The algorithm is expected to be amenable

to parallel implementation but still fast in serial simulation. The system is not

intended as a model of human stereopsis in any respect, but as much as possible

from human stereopsis research is used, since human brain is the best working sys-

tem. A dense disparity map with subpixel accuracy is attempted to be obtained

with explicit localization of depth discontinuities and occlusions.

1.2 The Organization of the Thesis

Following this introductory chapter, previous work on stereo is reviewed

in Chapter 2 titled \Background". Then, in Chapter 3, the stereo algorithm

developed in this thesis is presented with results on test images. The thesis ends

in Chapter 4 with the conclusions drawn from this work.
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CHAPTER II

BACKGROUND

Two valuable sources as reviews of computational stereo vision are, a survey

by Barnard and Fischer published in 1982 [1] and, more recently, a review by

Dhond and Aggarwal [2] in 1989. Here, after a short description of the stereo

process, a more systematic review of the matching phase will be presented with

special emphasis on more recent developments and on the issues closely related

to the work presented in this thesis.

2.1 The Stereo Process

Stereopsis is the mechanism that fuses the images from both eyes to deter-

mine the depth. When we observe a point monocularly, we can say that it lies on

a certain line in space. If we observe the same point from a di�erent place, the

actual position of that point is the intersection of the two lines determined by

two eyes or two cameras. Consider two side-by-side cameras with almost parallel

optical axes (Figure 2.1). The plane on which a point, its projections and focal

points of the cameras lie is called the epipolar plane, and the intersection of this

plane with the images is the epipolar line. The di�erence between the relative

positions of the right and left projections of the same point is called disparity

and this di�erence is a function of the distance of that point to the viewing sys-

tem. Figure 2.2 illustrates this phenomenon for two di�erent geometries with two

points P1 and P2 on the same epipolar plane. If the axes of the cameras are par-

allel, then the objects at in�nity have zero disparity while all other points have

positive values. When the axes intersect at a point in front of the cameras, the

object at that distance has zero disparity. Closer points and farther points have

positive and negative disparities, respectively. This relation between disparity

and depth is the basis of stereo vision.
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Figure 2.1. The Stereo Camera Geometry and the Epipolar Plane

The passive stereo process can be divided into following phases: 1) im-

age acquisition, 2) determining the geometry, 3) matching and 4)calculating the

actual depth. Below, each of these phases is introduced shortly.

2.1.1 Image Acquisition

The quality of image acquisition a�ects the results considerably. Low-noise

cameras and good illumination conditions lead better results. When two cameras

are used they should be identical, if special stereo cameras are not available.
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2.1.2 Determining the Geometry

The geometric parameters for stereo are camera parameters and the rela-

tive positions of the two cameras. The camera parameters including the focal

length and distortion characteristics of the lens are known a priori and can be

determined very precisely. The relative positions of the cameras must be deter-

mined a posteriori in some applications such as aerial cartography. When certain

number of points are matched across images it is possible to �nd the rotation and

translation matrices which relate the positions. Generally, a�ne transformations

are applied to reproject one of the images or both so that image rows are aligned

with the stereo baseline if it is not aligned already, since this facilitates the stereo

task greatly in the next phase. Besides control points [3], correlations or Fourier

transform [4] [5] can also be used to realign the images. Note that if the cam-

eras are at di�erent distances to the scene, the e�ect of this di�erence cannot be

corrected by simple scaling because the projections are not orthographic. The

correction for perspective projections requires depth information which is not

known at this stage. However, if the depth variation is small compared to the

viewing distance then the projection can be assumed to be orthographic. Refer

to [6] [7] [8] for detailed information on this stage.

2.1.3 Matching

In this phase, the corresponding points in right and left images, that is,

the image points which are the projections of the same physical point, are de-

termined. Most of the work in this thesis deals with this problem. In matching

stage the correspondences may not be obtained at every pixel of the images so

an interpolation step is necessary if a dense depth map is required.

2.1.4 Calculating the Actual Depth

Once we know the geometry of the system and determine the disparity at

all points, it is straightforward to calculate the actual depth. An analysis of the

error in calculating the depth is found in [9] and [10].

Among the above phases the most di�cult one is the matching phase. Al-

though it is not known completely how biological systems solve this problem so

6



quickly and accurately, a large body of knowledge is at hand through neurophys-

iological studies on higher vertebrates and psychophysical studies on human.

2.2 Psychophysics and Neurophysiology of Stereopsis

In this section, a short collection of some results from neurophysiology or

psychophysics of stereopsis will be presented which seem to be closely related

to and/or have in
uence on computer stereo vision. However, a detailed and

exhaustive review is not intended. Interested reader is recommended to refer to

[11] [12] and [13].

2.2.1 The speed of human stereopsis

A very remarkable feature of human stereopsis is its speed: it takes about

200 msecs from presentation of the stimulus to the occurence of depth perception

[14] which is very close to the time needed for the information on the retina to

reach to the visual cortex via the visual pathway.

2.2.2 Stereopsis is a Low-Level Process

Stereopsis is a low level process, that is, it does not require recognition or

any abstract understanding of the image. It was �rst demonstrated by Julesz

that [15] stereopsis survives in the absence of any monocular cue such as texture,

a priori knowledge on the shapes and sizes of objects, shading etc. Figure 2.3 is

an example of random dot stereograms which was invented by Julesz. One can

see the 
oating square above the background when he �xates his eyes at a nearer

point in such a way that the two images overlap in the center.

2.2.3 Limited Fusional Area

Only the surfaces within a speci�c disparity interval, so-called Panum's

fusional area, can be fused. The extent of this range is measured between 10-40

minutes of arc depending on the data used. There is evidence that this range is

larger for inputs with low frequency content compared to high frequency inputs

[16] [17].
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Figure 2.3. %30 Random dot stereogram

2.2.4 E�ect of Contrast

It was shown by Julesz that [18] changes in the magnitude of the contrast

across the images does not destroy stereopsis, but a change in the sign of contrast

makes fusion of images impossible [15].

2.2.5 Hyperacuity

Even though the average distance among the light-sensitive cells of the

retina (cones), is about 20-30 seconds of arc at the fovea where those cells are

densest, the disparity di�erences down to 2 seconds of arc are detectable by the

human visual system [19]. However, this hyperacuity drops drastically for non-

zero disparities [20].

2.2.6 Gradient Limit

If the rate of change in disparity, that is, the disparity gradient, exceeds a

certain limit the images cannot be fused and objects appear as double (diplopia)

[21].
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2.2.7 Binocular Cells in Visual Cortex

Although there is some interaction of information from both eyes on the

way from retinae to cortex, the �rst place where cells di�erentially sensitive to

binocular disparity are observed is the visual cortex in cats and monkeys. A

considerable proportion of the cells at visual cortex are binocularly sensitive [22].

2.2.8 Ocular Dominance

Binocularly sensitive cells can be classi�ed as balanced or unbalanced ac-

cording to the type of their sensitivity [23]. Balanced cells respond equally to

stimuli from each eye, but respond very strongly when stimulated binocularly.

Unbalanced cells either respond stronger to one eye or exhibit a complex ocular

dominance pattern.

A certain layer of the visual cortex (layer 4) is organized in ocular dominance

columns. These vertical strips which are 1 mm thick in monkeys and 2 mm thick

in humans respond alternatingly to left eye and right eye. Binocular cells are

located above and below these monocular cells.

2.2.9 Orientation Selectivity

Almost all of the cells in visual cortex exhibit orientation selectivity at

various angles. However, most of them respond best to bars oriented within �20
degrees from the vertical [23].

2.2.10 Frequency Selectivity

Another important property of these cells is their frequency selectivity.

The optimal spatial frequencies of these cells range from 0.3 to 3 cycles/degree

in cats and 2 to 8 cycles/degrees in monkeys [12]. The bandwidth of the cells

in the average is a little bit larger than one octave. The constancy of relative

bandwidths over scales can be justi�ed by the statistics of natural images [24].

There is almost constant energy in all channels, because the amplitude spectrum

of natural images generally falls o� with 1=f .
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2.2.11 Receptive Fields Types

Receptive �eld is the activation pattern of a cell as a function of stimulus

position on the retina. According to the pattern of their receptive �elds the cells

in the visual cortex are classi�ed as simple and complex cells [25] . Simple cells

have smaller receptive �elds and low spontaneous activity. Some parts of their

receptive �eld respond the onset of the stimulus while some parts respond to the

o�set. On the contrary, complex cells respond both the onset and the o�set.

They have larger receptive �elds and greater spontaneous activity.

2.2.12 Binocular Sensitivity Types

According to their binocular sensitivity, the cells in the visual cortex are

classi�ed into four groups by Poggio and Fischer [23] as tuned excitatory (TE),

tuned inhibitory (TI), near and far. TE cells are excited by stimuli at the �xa-

tion distance. If the stimulus is disparate more than �0; 1 degrees then the cell

activities are suppressed, that is, these cells are sharply tuned to zero disparity.

The response pattern of TI cells as a function of disparity is the reverse of, but is

not as sharp as, that of the TE cells. Near cells are sensitive to stimuli near than

the �xation distance and far cells are visa versa. Among these cell groups only

TE cells are ocularly balanced. Later, other kinds of cells are also identi�ed and

it is claimed that types according to binocular sensitivity belong to a continuum

rather than discrete groups [26].

2.2.13 Modelling Simple Cells

The monocular receptive �elds of simple cells are well described by Gabor

functions [27] [28] which are �lters limited in both space and frequency. See

Subsection 2.3.2 for a detailed discussion on Gabor �lters. There exists evidence

that simple cells are found in pairs with an approximate phase di�erence of 90

degrees [29] which may compute real and imaginary parts of a complex Gabor �l-

ter. The integration of data from monocular receptive �elds is modelled as linear

summation by Ohzawa and Freeman [30] based on neurophysiological experi-

ments. Nomura et al. [31] proposed a similar modelling where linear summation

is followed by a non-linear smoothed thresholding function. This model predicts

largely the binocular behavior of cells in the striate cortex. Freeman and Ohzawa
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observed that the phase di�erence sensitive responses of simple cells are not dis-

turbed by large contrast di�erences across right and left eyes. Considering this

observation, they proposed a monocular contrast gain mechanism that keeps the

e�ect of contrast almost constant.

2.2.14 Coarse-to-Fine Structure

There is evidence that data from low-frequency channels constrain the

matching at high frequencies. Wilson et al. [32] found that channels more than 2

octaves apart process independently, but closer channels interact. Low-frequency

signals a�ect fusion in high-frequency channels but not vice versa. Watt [33] also

concludes, after a series of experiments, that the human visual system uses a

coarse-to-�ne strategy.

2.3 The Matching Primitives

One of the major di�erences among the stereo algorithms in the literature is

in the properties of the images they choose for matching. Considering this aspect,

stereo vision algorithms are classi�ed roughly into two main classes: feature-based

and area-based. These two kinds of primitives will be discussed in detail in the

following two subsections.

2.3.1 Feature-Based Matching Primitives

Image features which are chosen for matching are high interest points or

point sets like edgels, edge segments or intervals between edges. The features

can be localized very accurately (generally with sub-pixel resolution) which leads

to accuracy in the computed disparity. They generally correspond to physical

boundaries of objects, surface markings or other physical discontinuities, so pro-

vides valuable depth information. These features are typically sparse, that is,

there are features at a very low percentage of pixels in an image. This speeds up

processing since only features are tried to be matched which are small in number.

On the other hand, disparities at non-feature points should be interpolated.

The fact that corners and vertices are highly distinguishable and generally

sparse matching primitives makes the matching process less ambiguous. Corners

or vertices can be detected by two methods: The �rst method involves analysis
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Figure 2.4. Circularly symmetric LoG operator (inverted)

of detected edges and the second works directly on grey-level images. For in-

stance, Kim and Bovik [34] use high curvature points on edges. The Moravec

operator which falls into the second category is frequently used [35] [36], though

more recent and complicated operators [37] may be more powerful in resolving

ambiguities.

Edgels seem to be the most common matching primitive in stereo research

[38] [39] [40] [41] while zero-crossing of the Laplacian of Gaussian (LoG) seems

to be the most common edge detection method [42] [43] [16] [44] [45] [34]. The

LoG operator, so-called Mexican-hat operator (see Figure 2.4)

52 G(r; �) = � 1

�3
p
2�

 
1� r2

�2

!
e(�r

2=2�2) (2:1)

which was �rst proposed by Marr and Hildreth [46] has several useful properties.

The LoG is a Gaussian smoothing followed by a second derivative operation.

The scale factor � which is the standard deviation of the Gaussian, is inversely

proportional to the average density of obtained edgels, s, with the equation [42]

s = 0:0945=� (edgels=pixel); (2:2)

so we can control the ambiguity. Besides, Marr and Hildreth state that zero-

crossings of LoG as an edge detector is biologically plausible. Even the large

convolutions can be calculated quickly by either approximating the LoG by a
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di�erence of Gaussians or by decomposing the LoG [46] [47] [48] [49]. Although

the zero-crossings of the LoG may detect spurious edges they can be eliminated

with little extra computation [48] [50]. Another disadvantage of the LoG is the

displacement of edges as � grows. This behavior of edges is well-investigated in

scale space [51] [52] [53] which is introduced by Witkin as [52]

fss(x; �)
def
= f(x) � g(x; �) = 1

�
p
2�

d2

dx2

Z 1

�1
F (!)e�(x�!)

2=2�2 d! (2:3)

where g(x; �) is the Gaussian function e�x
2=2�2 and F (!) is the Fourier transform

of f(x). Image of edges detected in scale space is called a scale map. Clark

[51] showed that the error in zero-crossing based matching increases with sigma,

disparity gradient and the angle of the scale map contour to vertical. Ulup�nar and

Medioni [50] proposed a technique to correct for this displacement. The direction

of the edge is approximated as the direction of the gradient of the �ltered image.

In matching only edgels with the same sign and with roughly the same orientation

are considered [54]. In recent stereo research Canny operator [55] and Deriche

method [56] are also used as edge-detectors [57] [3] [58] [41]. Peaks of the LoG

�ltered image may also be used with zero-crossings [59].

A more abstract image feature is edge segments, either line segments [60]

[58] [10] or curves [61] [62] [45]. Use of segments instead of edgels reduces the

number of possible matches signi�cantly. Besides one can de�ne similarity mea-

sures between edge segments using the length, orientation, curvature, strength,

coordinates of edge points, average intensity and intensity slope at each side or

similar characteristics. Boyer and Kak [63] use structural primitives and a set

of named relations over those primitives. The dissimilarities of primitives are

obtained empirically using manually matched pairs.

The interval between two edges along a scanline is also used as a matching

primitive. Lloyd [43] de�ned the dissimilarity of two intervals I1 and I2 as

�(I1; I2) =
1

fl
jl1�l2j+ 1

fa
(D(�r1; �r2)+D(�l1; �l2))+

1

fg
(jgr1�gr2j+jgl1�gl2j) (2:4)

where li; �ri; �li; gri and gli are the length, the angles of edges bounding the interval

from right and left of the interval Ii and average gray levels at each end of the

interval, respectively. fl; fa and fg are �xed weights to adjust the contribution

of each feature and D(�1; �2) = 1 � cos(�1 � �2). The cost function of Ohta and

Kanade [64] for intervals is based on intensities: they assume that the pixels from
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two matching intervals are from the same homogeneous surface so they must

have similar intensities. The cost of matching two intervals with lengths l and k,

respectively, is Cp = �
p
k2 + l2 where the variance and mean of all pixels in the

two intervals are computed as

m =
1

2

0
@1

k

kX
i=1

ai +
1

l

kX
j=1

bj

1
A (2:5)

�2 =
1

2

0
@1

k

kX
i=1

(ai �m)2 +
1

l

kX
j=1

(bj �m)2
1
A (2:6)

A similar cost function used by Ito and Ishii [65] for one side of edges is

E = �jmr �mlj=(mr +ml + 1) + (1� �)j�2r � �2l j=(�2r + �2l + 1) (2:7)

where m and �2 denote average and variance of pixels, respectively.

2.3.2 Area-Based Matching Primitives

Area properties are those which are available at almost every point in an

image. The simplest area property is the image intensity. The smallest is the dif-

ference between the pixels to be matched, the better is the match. This measure

is very sensitive to noise as well as to brightness di�erences across images. On

the other hand, it is very simple and easy to compute, so it was used by several

researchers [66] [67] [68]. Also Jordan and Bovik [69] have developed a di�erence

metric for color images based on intensities. Another area property is the deriva-

tive of intensity. This measure is not much sensitive to illumination di�erences

but it is still sensitive to noise. Zhou and Chellappa [70] have �t polynomials to

the image intensity to reduce the e�ect of noise. Kass [71] uses a vector formed

by �rst and second derivatives of the image at two orthogonal directions as a

matching primitive that is robust to moderate noise.

A common way to match areas directly is to �nd correlations between ar-

eas from left and right images [40] [72] [73] [3] [74]. The cross-correlation and

normalized cross-correlation at position (i; j) of the right image with disparity d

are

C(i; j; d) =
NX

x=�N

MX
y=�M

Ir(i+ d+ x; j + y) Il(i+ x; j + y) (2:8)
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and

C(i; j; d) =

�PN
x=�N

PM
y=�M Ir(i+ d+ x; j + y) Il(i+ x; j + y)

�2
PN
x=�N

PM
y=�M I2r (i+ d+ x; j + y)

PN
x=�N

PM
y=�M I2l (i+ d+ x; j + y)

(2:9)

respectively. There are several other correlation-like measures of which the most

frequently used one is the sum of squared di�erences:

C(i; j; d) =
NX

x=�N

MX
y=�M

(Ir(i+ d+ x; j + y)� Il(i+ x; j + y))2 (2:10)

A comparison of several correlation-like functions can be found in [75] and [73].

Although correlation techniques are successful at textured areas, they fail around

depth discontinuities, since the area inside the correlation window belongs to at

least two di�erent surfaces at di�erent depths, so the window does not match to-

tally at any disparity value. They also su�er from disparity gradients because one

of the signals is scaled compared to other. Besides, the accuracy obtained is lesser

when compared to feature-based matches. Another drawback of the correlation

technique is its computational complexity. As the size of the correlation win-

dow gets larger, the computational complexity and the uncertainty in disparity

increase as well as problematic regions near discontinuities get larger, however,

the match becomes more robust to noise. To overcome this problem adaptive

window sizes can be used [76]. Nishihara who used correlations of the signs of

LoG �ltered images [77] showed that correlation of sign representation has good

localization properties, that is, it has a sharp autocorrelation function, and it is

not sensitive to contrast di�erences. Besides, the multiplication in correlation is

replaced with an exclusive or function.

Another dense property to match is local frequency components [51] [78]

[79] [80] [81] [82] [83] [84]. The Fourier theorem states that when a function

f(x) with Fourier transform F (u) is shifted by an amount of �x then the Fourier

transform of the shifted function fs(x��x) is e�ju�xF (u), so a shift in the spatial

domain corresponds to a phase shift in the frequency domain. If the left view had

been a shifted version of the right view it would have been possible to determine

the amount of shift from the phase of the Fourier transforms of both images.

However, since the shift, i.e. the disparity, is di�erent in various regions of the

images, one needs a local frequency �lter to determine the phase di�erences. A

natural choice for such a function is the Gabor �lter [85] which is a bandpass
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Figure 2.5. Real and imaginary parts of the complex Gabor �lter with a band-

width of 1 octave

�lter with limited spatial width:

g!0(x) =
1

�
p
2�
e�x

2=2�2ej!0x (2:11)

whose Fourier transform is

G!0(!) = e�(!�!0)
2=2�2 (2:12)

where the product �� is 1 which is the theoretical minimum of any linear complex

�lter [85]. This choice is also biologically plausible since the receptive �elds of

simple cells are not statistically distinguishable from Gabor �lters [27]. Besides,

simple cells are found in pairs with an approximate phase di�erence of 90 degrees

[29] and this justi�es the use of complex �lters. If the ratio of the spatial width,

�, to the period of the �lter, !0=2�, is held constant, then the shape of the �lter

and the relative bandwidth given by

� = log2

�
!0 + �

!0 � �

�
(2:13)

in octaves remain unchanged. Figure 2.5 shows the real and imaginary parts of

a Gabor �lter with a bandwidth of 1 octave. The 2-dimensional extension of the

�lter is

guv(x; y) = e
�
�

x
�x

+ y
�y

�2
ej(ux+vy) (2:14)

Note that the �lter is separable, so computational complexity is reduced from

O(N2) to O(N). The �ltered versions of right and left images Ir(x; y) and Il(x; y)
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are

Rr
!0(x; y) = Ir(x; y) � g!0(x; y) (2.15)

Rl
!0
(x; y) = Il(x; y) � g!0(x; y): (2.16)

So that the Gabor �ltered image is a band-pass signal, it can be modelled (in 1-D

for simplicity) as [79]

R!0(x) = �(x)ej(!0x+ (x)) (2:17)

where !0 is the center frequency equal to the frequency of the �lter. The local

frequency is de�ned as [86] !l = �0(x) where �(x) = !0x +  (x). If we assume

perfect sinusoids that is  (x) = kx then we can estimate the disparity as [78]

dr(x) =
�l(x)� �r(x)

!0
: (2:18)

Since the bandwidth of the �lter is non-zero,  (x) may vary around zero and

disturb the linearity. However, in real images with su�cient texture the phase is

almost linear over the image except some regions. Fleet et al. [79] showed that

the bandpass phase is not sensitive to typical distortions that exist between right

and left images. Later, Fleet and Jepson [87] did a more in-depth treatment of

the phase stability for several complex band-pass �lters.

Note that the phase measurements give the disparity directly, so a search

is not performed for the best �t, because of this phase-based techniques are

sometimes called \correspondenceless". It is worth mentioning that matching

phases is a general case of matching zero-crossings because the zero-crossings

of band-pass �lters such as LoG correspond roughly to level curves at �=2 and

��=2 of the phase signal. Another advantage of the phase-measurements is that

they provide sub-pixel measurements without explicitly reconstructing the signal

between pixels. This is also in accordance with biological �ndings.

Phase measurements are valid within a limited range of disparity because

of the wrap-around problem: we measure only the principal component of the

phase in the range [��; �], so a �lter of fundamental frequency !0 signals only

disparities of ��=!0 to �=!0. Sanger [78] uses only the phase of the signal and

the magnitudes are used independently to generate con�dence values.

Fleet et al. [79] iterate the basic measurements to obtain more accurate

results. They investigate the Gabor �lter in Gabor scale space which is de�ned
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as

S(x; !) = (e�x
2=2(�(!))2ej!x) � Ix (2:19)

and

�(!) =
1

!

 
2� + 1

2� � 1

!
(2:20)

where � is the relative bandwidth in octaves. In Gabor scale space there are

some points where the magnitude is zero, so the phase is unde�ned. At a neigh-

borhood of these singular points the local frequency varies very rapidly and the

disparity measurements are not reliable. Fleet et al. [79] use thresholds on local

frequency deviation and local amplitude variation to detect singularity neighbor-

hoods. They also show on real images how disparity measurements improve when

we detect and correct for singularities. Weng [81] considers a drawback of the

Gabor �lter: the DC residual of the even component which disturbs the linearity

of the phase. Instead he proposes another local frequency �lter, namely, Win-

dowed Fourier Phase (WFP) where the Gaussian envelope of the Gabor �lter is

replaced with a rectangular one:

h(x; y) = wM(x; y)e
j(ux+vy) (2:21)

where

wM (x; y) =

8><
>:

1 if jxj �M=2 and jyj �M=2

0 otherwise:

He also convolves this �lter with a Gaussian �lter to remove the high frequency

noise in the signal. The resultant �lter is very similar to the Gabor �lter but

has no DC when M is a multiple of the period. However, Fleet and Jepson

[87] state that this �lter has a bias towards phase values of ��=2 because of

the di�erence of amplitude spectra of real and imaginary parts. Westelius [80]

compares several types of complex �lters, namely, Gabor, lognorm, non-ringing

and di�erence of Gaussians and concludes that the choice of �lters depends on

the intended application.

Nomura [82] introduced a fundamental equation for binocular disparity,

dI

do
= rI d + @I

@o
= 0 (2:22)

where o is the eye position, I is the intensity and d is the disparity. This equation

is a variation of the gradient model of optical 
ow �eld. Substituting Gabor
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�ltered image in place of I, he obtained

@Rl(x; y)

@x
d + (Rl(x; y)�Rr(x; y)) = 0: (2:23)

Besides he showed that the terms other than d can be approximated as linear

combinations of far, near and tuned inhibitory type simple cells.

Another correspondenceless method is the phase correlation that was in-

troduced by Kuglin and Hines [88]. If an image patch l(x; y) from the left image

and the corresponding image patch r(x; y) in the right image have a disparity d

then we can write l(x; y) = r(x; y) � �(x+ d; y). Solving for the disparity term in

the Fourier domain gives

e�jud =
L(u; v)

R(u; v)
=
L(u; v)R�(u; v)

jR(u; v)j2 : (2:24)

Since the magnitudes of L(u; v) and R(u; v) are identical

e�jud =
L(u; v)R�(u; v)

jL(u; v)R�(u; v)j: (2:25)

The phase correlation is de�ned as

Plr(x; y)
def= F�1

(
L(u; v)R�(u; v)

jL(u; v)R�(u; v)j
)

(2:26)

which equals to

F�1
n
e�jud

o
= �(x� d; y): (2:27)

So, we can obtain the disparity directly by locating the impulse. This is similar

to cross-correlation because

Clr(x; y)
def= Efl(x� d; y)r�(x; y)g = F�1 fL(u; v)R�(u; v)g : (2:28)

Note that, in phase correlation, the magnitude of the signals in the Fourier do-

main are forced to unity. This technique is better than cross-correlation when

there exists band-limited noise like the e�ect of illumination changes that are

concentrated at low frequencies, because all frequencies contribute to the result

equally [6].

A related method is the cepstral �ltering approach of Yeshurun and Schwartz

[14]. Cepstral �ltering is a Fourier transformation followed by a logarithm and

an inverse Fourier transform. Yeshurun and Schwartz append l(x; y) to the left

of r(x; y). Assume that the width of the patches is D and r(x; y) is equal to
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l(x� d; y) where d is the disparity to be computed. Then the compound image

f(x; y) can be written as

f(x; y) = l(x; y) � f�(x; y) + �(x�D � d; y)g (2:29)

with the Fourier transform

F (u; v) = L(u; v) � f1 + e�j(D+d)ug: (2:30)

When we take the logarithm of F (u; v), the product becomes a sum:

log(F (u; v)) = log(L(u; v)) + log(1 + e�j(D+d)u): (2:31)

Taking the Inverse Fourier Transform, we obtain

F�1 flog(F (u; v))g = F�1 flog(L(u; v))g+ F�1
n
log(1 + e�j(D+d)u)

o
: (2:32)

The second term equals

F�1
n
log(1 + e�j(D+d)u)

o
=

1X
n=1

(�1)n+1 �(x� n(D + d))

n
: (2:33)

Thus, we can �nd the disparity of the patch by locating the largest delta function.

2.4 Problems in Matching

The matching is not a trivial task: one has to choose the best (according to

some criteria) match among a number of possible matches, and this match is not

necessarily the true one. The sources of ambiguity and error in stereo matching

can be classi�ed as photometric variation, lack of texture, repetitive texture and

occlusions [3]. Following subsections brie
y explain these sources.

2.4.1 Photometric Variation

Stereo images are not simply warped versions of each other. The sensor

and quantization add noise to the images. Besides, the non-linearities in the

lens-camera system distort them. If the images are taken simultaneously, using

two cameras, little variations between the gains or optical characteristics of the

cameras may a�ect the result. On the other hand, if the images are taken suc-

cessively, using the same camera, the lighting conditions may change meanwhile.

Sometimes the view changes physically. Non-Lambertian surfaces are another

source of error, since the corresponding light intensities of a point change across

the images with the viewing angle.
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2.4.2 Lack of Texture

In some areas of images there is no signi�cant texture, so nothing can be

matched. The disparity can only be interpolated in these areas. Some examples

of such areas are clear sky, painted 
at surfaces like walls and too dark or too

bright areas where all the pixels have the minimum or maximum possible value,

respectively.

2.4.3 Repetitive Texture

If a texture is repeated in horizontal direction (e.g. a chess table), there will

be more than one good matches. In this case, one cannot decide which one is the

true match using only local information.

2.4.4 Occlusion

When there is a discontinuity in depth, some parts of the scene are seen

only by one camera, so these areas do not have a counterpart to match in the

other image.

2.5 Representing Disparity

When a very sparse set of matching primitives is used, the disparities can be

stored internally as a list of coordinates of features and associated disparities. In

other cases, an array is used to store the disparity �eld. Generally the maximum

disparity range is smaller than 256 pixels so the arrays are of type byte. If sub-

pixel accuracy is aimed 
oating point type can be used. Some researchers keep

two disparity arrays for right and left images respectively. Other alternatives

are either to use centralized coordinates or to de�ne a dominant eye. Besides a

special marker can be used in the disparity �eld to model occluded regions.

2.6 Constraining the Solution

Since the correspondence problem is ill-posed in nature, that is, the exis-

tence, uniqueness and stability of the problem is not guaranteed, some a priori

data need to be used about the disparity �eld. The assumptions made are im-

posed on the algorithms as constraints. Every stereo algorithm uses some of these
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constraints implicitly or explicitly.

2.6.1 Smoothness

Marr and Poggio [89] stated that matter is cohesive, that is, \it is separated

into objects, and the surfaces of objects are generally smooth in the sense that

the surface variation due to roughness cracks , or other sharp di�erences that can

be attributed to changes in distance from the viewer, are small compared with

the overall distance from the viewer"[16]. The disparity �eld produced by such

surfaces is smooth (varies continuously) everywhere except at object boundaries,

which occupy only a small portion of an image. Some researchers [68] [69] [70]

[90] [91] use this constraint implicitly as an additional term, to an energy function

to be minimized, similar to the variance of disparity or magnitude of the gradient

�eld. Note that such a term tries to make neighboring disparities equal, so it

favors frontoparallel surfaces. A true surface smoothness constraint must force

neighboring surface normals to be parallel. An example to this kind of smoothness

constraint is minimization of the squared magnitude of the second derivative.

Blind use of the smoothness constraint can cause problems at depth dis-

continuities. Several methods are proposed to avoid smoothing of the disparity

�eld at and near these areas. Weng [81] used the term �jd(i; j)� �d(i; j)j2 where
�d(i; j) is the average disparity in the neighborhood of the point (i; j), but when

calculating �d(i; j), points on the other side of intensity discontinuities, which cor-

respond to possible discontinuities of disparity, were not used. Another method

of handling disparity discontinuities while using the smoothness constraint is us-

ing line processes [39] [91] where the smoothness constraint is broken. Sometimes

the smoothness constraint is used explicitly where an accepted match is used to

guide matches in the neighborhood [61].

A weaker form of the smoothness constraint is the �gural continuity con-

straint [42][62] which was �rst exploited by Mayhew and Frisby [59]. This con-

straint implies smooth variation of disparity along edges, because the edgels on

the same edge segment are assumed to belong to the same object and this as-

sumption is almost always valid. Mohan et al. [92] use �gural continuity for

correction of disparity after obtaining matches by any algorithm. Note that the

�gural continuity constraint is automatically satis�ed when contours are used as

matching primitives, so the above correction cannot be applied.
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Another form of smoothness constraint is �tting models where planar and

quadratic patches are �t to the estimated disparity �eld [93] [94]. Smoothness

constraint can also be expressed as a gradient limit on disparity that is known to

be used in human stereopsis. Generally, the support from a neighboring match

to a potential match is inversely scaled by the disparity gradient between the

two matches [95] [96] [61]. Cox et al. [67] do not use the smoothness constraint,

but they choose, among several solutions for each scanline, that one which has

minimum number of discontinuities. Poggio et al. [97] showed that smoothness

assumptions in early visual processing including stereo are related to regulariza-

tion theory which is a branch of mathematics dealing with ill-posed problems.

2.6.2 Opaqueness

This assumption is violated if there are semi-transparent surfaces in the

image, but this is very rare in natural images except objects like fence or bush

which occludes background partially. In case of transparency, continuity con-

straint is not applicable, since the disparity �eld switches frequently between

background and foreground. To handle transparency as well as discontinuities at

object boundaries, Prazny introduced the coherence principle which states that

the world is made of (either opaque or transparent) objects each occupying a well

de�ned 3D volume. So \a discontinuous disparity may be a superposition of a

number of several interlaced continuous disparity �elds each corresponding to a

piecewise smooth surface" as a result \Two disparities are either similar, in which

case they facilitate each other because they possibly contain information about

the same surface, or dissimilar in which case they are informationally orthogonal,

and should not interact at all because they potentially carry information about

di�erent surfaces"[95]. He proposed the support function

s(i; j) =
1

cji� jjp2�e
�

jdi�dj j
2

2c2 ji�j j
2

(2:34)

where s(i; j) is the support from the neighboring point j to point i. Among pos-

sible matches at point j only the one with minimum disparity di�erence jdj � dij
is used in calculation of support. The term jdi�dj j

ji�j j on the exponent is the dispar-

ity gradient so the support function imposes a disparity gradient limit implicitly.

Pollard et al. [98] developed independently a very similar support function which
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used a disparity gradient limit explicitly. Both algorithms performed well on

images involving transparencies and depth discontinuities. Szeliski and Hinton

[99] proposed a local function, the di�erence of heat equations, which leads to a

function similar to that of Prazdny when applied iteratively:

s(i; j) =
1q

(�1ji� jj)2 + jdi � dj j2
� 1q

(�2ji � jj)2 + jdi � djj2
(2:35)

This function can be implemented as a relaxation process, but it lacks the ability

to choose the match with minimum disparity gradient.

2.6.3 Orderedness

Assume a point A, and a point B which is right to A match points A0 and

B0 in the other image. Then, this constraint states that B 0 cannot be at the left

side of A0. Resulting disparity constraint violates this assumption if the disparity

di�erence between a �gure and its background is larger than the width of the

�gure in the image. Such objects, like columns, ropes etc. are rare in natural

images, so this constraint is frequently used to reduce ambiguity [43] [64] [96] [61]

[62] [74]. Human visual system also prefers order-preserving solutions [100].

2.6.4 Uniqueness

This constraint states that a point in one image matches only one point in

the other image, that is, the disparity �eld is a single valued function. In stereo

pairs involving only opaque surfaces, this constraint greatly reduces the number

of possible solutions. If human visual system uses this constraint or not is a

controversial problem since there is evidence for both use of this constraint [100]

and for existence of multiple matches [101].

2.6.5 Compatibility

If point A in the right imagematches point B in the left, the point B matches

point A. Some researchers calculate right and left image disparities independently

and than check for compatibility across the �eld to eliminate false matches. Figure

2.6 shows valid and invalid matches across two lines schematically where circles

and arrows represent pixels and matches, respectively.
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L

R

a b c d

Figure 2.6. Matches between rows R and L violating a) the uniqueness con-

straint, b) the compatibility constraint and c) the orderness constraint. d) A

valid matching �eld with 2 occluded pixels in the row R.

2.6.6 Epipolarity

A�ne transformations are applied to the images such that the epipolar lines

are collinear with image rows. The determination of the epipolar line reduces

the search space to one-dimension, while the alignment with image rows greatly

simpli�es the search.

2.6.7 Limited Disparity Range

In accordance with Panum's fusional area, the disparity range in which a

match is searched for is determined a priori. Sometimes, even when the epipolar-

ity constraint is used, a small vertical disparity range is allowed to compensate

for inexact registration.

2.7 Strategies

Once matching primitives are decided and constraints are set, we face a

very large problem. A multi-dimensional space is to be searched for (in some

sense) the best solution that satis�es all constraints. Since to visit all states for

the best solution is impractical, if not impossible, we need to employ heuristics

to reach the best or at least a good solution.

2.7.1 Multi-Channel Analysis

The existence of di�erent band-pass frequency channels in the vertebrate

visual cortex led some researchers to use frequency �lters in stereo algorithms.

Gaussian smoothing and Gabor-like �lters are mostly used in band-pass �ltering.
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As the channel gets coarser (low-frequency), the size of the required masks gets

larger, so the computational cost of the �lters increases. An equivalent and

simpler method is to smooth the image using a Gaussian kernel and to subsample

it successively [102]. This way, a Gaussian image pyramid with various resolutions

is formed. Usually a spacing of one octave between the channels is used which

leads to resolutions of half of the �ner channel (i. e., 256x256, 128x128, 64x64).

A more rapid way to form the image pyramid is image consolidation that replaces

four adjacent pixels with one pixel having the intensity of average of the four pixels

[103]. Consider an n by n stereo pair with disparity range m. If integer disparity

values are used there are n2m possible solutions to the problem, while the number

of possible solutions in the coarser channel is (1=8)n2m. The accuracy of the

result is half of the coarser channel. But we can use this result to constrain the

solution in the next �ner channel. This strategy is called coarse-to-�ne analysis

and is very popular in stereo research [16] [77] [42] [16] [93] [38] [103] [66] [40] [69]

(See Figure 2.7). Besides the computational savings, this method generally leads

more accurate �nal results. The disadvantage of the method is the spreading of

any error in a coarse level to �ner levels. Also, this method assumes spectral

continuity. Coarse-to-�ne analysis can be applied in a continuum of frequency

scale, rather than separate channels. This approach is explained in the next

subsection. The alternative multi-channel approach to coarse-to-�ne analysis is

to process each channel independently and to combine subsequently [78] [73].

2.7.2 Relaxation

All photometric and geometric constraints may be expressed in a global

cost function, then the minimum of this function is searched using either a deter-

ministic or stochastic relaxation rule in an iterative fashion. Barnard [68] de�ned

an energy function as follows. Let Ri;j and Li;j denote intensity of left view and

right view pixels, respectively, and di;j be the disparity at Ri;j. Then,

E =
X
i

X
j

�
kRi;j � Li;j+di;jk+ �k 5 (di;j)k

�
(2:36)

Here the �rst term is the photometric constraint and the second term is the

smoothness constraint. Barnard used simulated annealing (SA) to �nd a near-

minimum solution. SA is a stochastic technique for optimization which takes

its 
avour from statistical mechanics [104]. A control parameter which is called
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Figure 2.7. Coarse-to-�ne control strategy.
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temperature is gradually lowered as the network relaxes according to a stochastic

update rule. Although �nding a near global minimum solution is guarantied, this

method is extremely expensive in terms of computation. Jordan and Bovik [69]

used SA with a coarse-to-�ne strategy and were able to reduce the computation

several times but it is still expensive.

Hop�eld-like neural networks are also used excessively in �nding minimum

of stereo energy functions [89] [70] [90] [36]. Marr and Poggio [89] did not give

an energy function explicitly, though it is easy to �nd a Lyapunov function for

their network. Instead they give a network structure and an iteration rule for the

activities in the neural network as

C t+1(x; y; d) = �

8<
:

X
x0;y0;d02S(x;y;d)

C t(x0; y0; d0)� �
X

x0;y0;d02O(x;y;d)

C t(x0; y0; d0) +N0(x; y; d)

9=
;

(2:37)

where �() is a threshold function, � is the inhibition constant, N0(x; y; d) is the

correlation of point (x; y) in the right image with the point (x� d; y) in the left

image, S(x; y; d) and O(x; y; d) are the excitatory and inhibitory neighborhood

which correspond to the smoothness and uniqueness constraints, respectively.

Zhou and Chellappa [70] introduced a binary Hop�eld network to minimize an

energy function which used intensity derivatives for matching and smoothness

constraint. Both neural networks performed well on random-dot stereo images,

but in both approaches the smoothing term caused problems near depth discon-

tinuities. To avoid these problems, line processes introduced in [105] are used in

the stereo energy function:

E =
X
i

X
j

�
k(Ri;j � Li;j+di;j )(1 � li;j)k+ �k 5 (di;j)k(1� li;j) + � li;j

�
(2:38)

where li;j is a binary process which indicates a depth discontinuity at pixel (i; j)

when it is 1. Photometric constraint as well as smoothing constraint is broken

when li;j is 1, so that occluded regions where a low-cost match cannot be found

are also modelled. � is the cost of a line-process element which is necessary to

avoid an excessive number of line processes. Yuille [90] used a Hop�eld-style ana-

log network to minimize the above function. Although the neural network was

successful for similar formulations of surface interpolation and motion analysis

problems, it yielded poor results for stereo case. Yuille states that this bad be-

haviour of the network is due to the complicated structure of the energy function
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that has lots of local minima.

The discontinuities of depth generally correspond to intensity and texture

edges. Gamble and Poggio use intensity edges to break smoothness [106]. Simi-

larly, Toborg [91] obtained successful results using a Hop�eld Network when he

formulated the stereo energy function together with motion analysis and edge

detection. Binary Hop�eld network is also used for feature-based correspondence

[36]. The interest points obtained from natural images by the Moravec opera-

tor are matched under the smoothness and uniqueness constraints. The network

matches most of the points correctly after about 1000 iterations. Later Joshi and

Lee [107] applied elastic nets, that were �rst introduced by Durbin and Willshaw

[108] as a mechanism to establish ordered neural mappings, to the same problem.

Their energy function is

E = �KX
i

ln
X
j

�(p0i;j;K) (2:39)

where

�(p;K) = exp
�p2
2K2

; (2:40)

p0i;j =
q

x2 + y2; 0 � 
 � 1; (2:41)

x = lj;x + dj;x � ri;x; (2.42)

y = lj;y + dj;y � ri;y; (2.43)

and ri;x and ri;y are horizontal and vertical coordinates of i'th right point, re-

spectively. lj;x and lj;y are similarly de�ned for left points and dj;x and dj;y are

horizontal and vertical disparities of ri, respectively. The parameter K is like the

temperature in simulated annealing and lowered gradually but a deterministic

update rule is used: the steepest gradient in the energy function is followed but

the shape of the energy function is changed as K changes. Later, Lelo�glu [109]

used elastic nets in intensity-based dense stereo correspondence with smoothness

constraint:

E = ��KX
i

X
j

ln
X
n

�(n � di;j ;K)kRi;j � Li;j+nk

�0:25 ((di;j � di;j�1) + (di;j � di�1;j)) (2.44)

Note that the energy function reduces to that of Barnard when the control pa-

rameter K goes to zero (see Equation 2.36). Another form of \deterministic
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annealing" is mean �eld annealing (MFA) which is applied to stereo correspon-

dence by several researchers [39] [41]. MFA is similar to simulated annealing but

is typically 50 times faster [41]. In simulated annealing, MFA and elastic nets,

the control parameter can be related to coarse-to-�ne analysis, because when the

control parameter is large, �ne details are smoothed out or ignored and as the

control parameter gets smaller, �ner details are taken into account. Two other

similar approaches are graduated non-convexity algorithm of Blake and Zisser-

man [110] and scale space signal matching of Witkin et al. [111]. In graduated

non-convexity algorithm, convex approximations to the true energy function are

generated with decreasing levels of smoothness. In scale space tracking, the min-

imum of the energy function is followed as the scale (see Eqn. 2.3) is decreased.

Later Whitten [112] applied scale space tracking to deformable sheets.

Another relaxation type is the spreading of constraints. The best and most

unambiguous matches are accepted �rst and they constrain more ambiguous ones.

Lloyd [43] �rst matches strong edges, then matches others, because a weak edge

may be missing in one of the images. Sherman and Peleg [61] pair best-matching

contours �rst, then constrain the neighbors of these matches through a support

function. Kim and Bovik [34] match high-interest points and propagate those

disparities along contours.

An interesting neural network approach to stereopsis is the work of Khotan-

zad et al. [113]. They train a feed-forward neural network with back-propagation

learning rule imposing only the epipolarity constraint. The uniqueness and con-

tinuity constraints are automatically learned and coded by the neural network

and the net outperformed the Marr-Poggio network.

2.7.3 Dynamic Programming

Dynamic programming is a search technique which always �nds the min-

imum-cost path without visiting all nodes of a tree (See [114]). The stereo prob-

lem can be translated into a dynamic programming problem as follows: Consider

two corresponding scanlines from two images under the epipolarity constraint.

The points where almost vertical edges cross these rows are taken as matching

primitives and all possible matches form the nodes. Using the orderedness con-

straint and a cost function based on the intervals between edgels, that is the

cost of passing from one node to another, the minimum-cost path is found [43].
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When the matching is performed independently on each row, a very valuable

source of information, connectivity of edges, is squandered. Baker [115] uses this

information in a cooperative procedure to detect false matches after processing

each line independently while Ohta and Kanade [64] use it by forming nodes as

vertically connected edges in a 3-dimensional search space. Cox et al. [67] use

intensity as the matching primitive so they �nd the minimum-cost path through

a 2-dimensional grid formed by the absolute di�erences of two scanlines. Boyer et

al. [62] and Matthies [72] also use dynamic programming in stereo correspondence

problem.

2.7.4 Hybrid Approaches

Feature-based approaches yield accurate but sparse solutions while area-

based approaches give dense results at the expense of computational complexity.

The idea of hybrid approaches is to use both methods together to compensate

each other's weaknesses. In the work of Lim and Prager [41], the results of an

edge-based stereo algorithm are used to improve the minimum energy solution

obtained by mean �eld annealing of an area-based energy function similar to

E =
X
i

X
j

 
F (di;j) + �

X
n2N

(di;j � dn)

!
(2:45)

where F (di;j) is the matching cost based on intensities and N is a neighborhood

of (i; j). That energy function is modi�ed as follows at points where a disparity

value de is available from the edge-based algorithm:

E =
X
i

X
j

 
F (di;j) + F (di;j) jdi;j � dej+ 2�

X
n2N

(di;j � dn)

!
(2:46)

The results obtained by the help of edge-based results are qualitatively better.

Yuille [39] use feature-based and intensity-based terms in one energy function.

Watanabe and Ohta [116] implemented a stereo vision system where three par-

allel modules are integrated through cooperative processing (See Figure 2.8).

Point-based matching module uses maximum correlation value as the best match.

Interval-based module is the same as the intra-scanline algorithm of Ohta and

Kanade [64]. The segment-based module uses the length and orientation of edge

segments and intensity values in their neighborhood. A module gives the re-

sults of its matching upon request of another module with con�dence values of
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the matching. They also present quantitative results of the improvement when

compared to the results obtained by operation of each module alone.

2.7.5 Using Other Sources of Information

It is well known that human visual perception owns its power to integration

of information from a variety of sources such as motion, shading etc. Computer

vision maturing in each of such methods now is in the way of building more

comprehensive vision systems integrating those modules.

Fusing motion and stereo was considered by a number of researchers [117]

[118] [119]. If we know the disparity �eld or optical 
ow for a sequence of stereo

images, it is easier to compute the other one. Besides, the discontinuities of op-

tical 
ow are generally also depth discontinuities. So, in general, one of them is

computed �rst and is used to guide the other. On the other hand, Toborg and

Hwang [91] calculated stereo disparity, optical 
ow and intensity contours simul-

taneously and cooperatively. They demonstrated the e�ectiveness of integrating

visual modules on synthetic images.

Other visual cues used with stereopsis include shape-from-shading [120]
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[121] [122] [123], shape-from-texture [124] and sonar [125]. Also, active systems

which seek for useful additional information by controlling camera parameters

are used more and more frequently [126] [127] [128] [129] [10].

Another useful source of information is additional images. See [2] for a

review of trinocular stereo and [130] for a recent work where several images are

used.
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CHAPTER III

THE STEREO SYSTEM

3.1 An Overview of the System

The stereo system developed in this thesis employs coarse-to-�ne strategy

which is shown schematically in Figure 2.7. This hierarchical structure brings

two advantages: increased accuracy and faster processing. The block diagram of

the system at only one level of the hierarchy is depicted in Figure 3.1. First, the

stereo image pair is Gaussian smoothed and subsampled to halve the resolution

until reaching the coarsest level. After formation of the image pyramid, multi-

resolution disparity analysis begins at the �rst, that is, the coarsest level. Each

level, except the coarsest one, uses the disparity �eld supplied by the coarser

channel as initial guess, so, each level, except the �nest one, supplies its output

to the �ner level. The coarse-to-�ne strategy carries the risk of spreading any

error in a coarse level to higher levels. To avoid such problems, system tries not

to make an early judgement: a disparity value is accepted only in existence of

convincing evidence. Otherwise, determining the disparity is left as a job for

higher levels.

In each level, a pixel-wise matching module, which uses normalized cross-

correlations as matching primitives, is used �rst. In this module the goodness of

a match is determined by using the value of the correlation and using a neigh-

borhood support function. Only unambiguous matches are accepted and these

accepted matches constrain their neighbors through uniqueness and orderedness

constraints. The pixels at which the ambiguity is not resolved after several iter-

ations are left unknown.

In the subsequent module, a sub-pixel disparity surface reconstruction is

attempted with detection of discontinuities and with interpolation of disparity

at unknown pixels. Here, sub-pixel means that disparity can have non-integer



Smoothing
Gaussian

and
Subsampling

Smoothing
Gaussian

and
Subsampling

COARSER  CHANNEL

FINER  CHANNEL

Initial Guess

Band-pass
Filtering

Edge
Detection

Band-pass
Filtering

Left Image Right Image

Increase

Resolution

and Quantize

Pixel
Matching

Module

Thin Plate

Module

Figure 3.1. Block Diagram of the Stereo System at one Level

values; the disparities are still estimated only at pixel positions. The detection of

depth discontinuities is guided by the intensity edges so an edge detection module

is included. For subpixel matching, phases of band-pass �ltered images are used

as matching primitives, so a WFP �lter module is employed. Very large unknown

regions are not interpolated in the thin plate module and left unknown.

In the following subsections each block is explained in detail.

3.2 Forming the Gaussian Image Pyramid

The Gaussian smoothing before subsampling is necessary to avoid aliasing.

The 1-D Gaussian function

g(x; �x) =
1

2��2x
e
� x2

2�2x (3:1)
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Figure 3.2. Image Pyramid of Right Image of Fruits Stereo Pair

has the Fourier transform

G(u; �x) =
1

2��2u
e
� u2

2�2u (3:2)

where �u = 1=2��x and u is in cycles=pixel. We want to remove frequencies above

0:5 cycles=pixel and above so we set �u = 0:25, that is, the frequency response

is 13.5% of its maximum at u = 0:5 cycles=pixel or equivalently �x = 2=�. The

2-D Gaussian is separable to two 1-D Gaussians, so we convolved the image with

the kernel

[ 0:184 0:632 0:184 ] (3:3)

vertically and horizontally before subsampling. An image pyramid formed by this

process on right image of the Fruits stereo pair (See subsection 3.9.1) is shown in

Figure 3.2. For a hardware implementation of the stereo algorithm, VLSI chips

which construct the image pyramid are available [131].

3.3 Pixel Matching

The pixel matching stage uses normalized cross-correlations for matching

which is de�ned as

C(i; j; d) =

�P2
x=�2

P2
y=�2R(i+ d + x; j + y) L(i+ x; j + y)

�2
P2
x=�2

P2
y=�2R2(i+ d + x; j + y)

P2
x=�2

P2
y=�2 L2(i+ d+ x; j + y)

:

(3:4)

The correlation size is chosen as small as 5x5 to reduce computational complexity

and to be able to match areas with large disparity gradient. Time required for

36



0 M-1
0

M-1

Right image row

Left image row

d
min

d
max

Figure 3.3. The matches forbidden by an accepted match due to uniqueness and

orderness constraints

calculating correlations can be reduced dramatically by employing a VLSI chip

designed for this purpose [132].

To spread the constraints, a mask, an MxNxD size binary array where M

and N are width and height of each image respectively and D is the maximum

allowed range, is used. Each entry of this array corresponds to a match and when

it is set to 1 indicates that this match is forbidden. The shaded area in Figure

3.3 is the set of possible matches among the pixels of two lines from the right and

left images which are limited by user-supplied maximum and minimum disparity

values. When a match is accepted (the black square), matches corresponding to

\+"s and \x" are marked as forbidden matches in the mask, since they violate

the uniqueness constraint and order reversal constraint, respectively.

When a match is supplied from a coarser channel, things go a little bit

di�erent. Since the initial guesses are supplied by the thin plate module, one may
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be tempted by the idea that these matches are exact. However, this is not always

true because of several reasons. Firstly, depth discontinuities that are small in

the coarser level are sometimes not detected and the disparity �eld is smoothed.

Secondly, any error in disparity is doubled due to the increase in resolution.

Finally, false matches may distort the thin plate. To anticipate for ambiguity in

initial guesses we allow � 1 pixel disparity around these matches which results

in the forbidden area pattern shown in Figure 3.4 a). The shaded area in Figure

3.4 b) shows allowed matches when the matches indicated as black are supplied

from the coarser channel. The correlations corresponding to matches forbidden

by initial guesses are never calculated, that is one of the reasons why coarse-to-

�ne strategy reduces computational complexity. At any level, most unambiguous

matches are accepted �rst. These matches constrain their neighbors and some

of the ambiguous potential matches become less ambiguous. These matches are

accepted and they further constrain others. The algorithm is as follows:

1. Let support threshold, Ts and correlation threshold, Tc take large values.

2. Find maximumcorrelation disparity at every point of the right image among

unmasked correlations above the threshold Tc.

3. Do above for the left image. Those disparities which are not consistent in

both sets are discarded ( Agreement between views). Remaining matches

are written in a temporary array.

4. Calculate support for each candidate disparity and discard those having

support belove Ts.

5. Check for any violation of uniqueness and order reversal constraints among

candidate matches. In case of violation, discard both matches.

6. Accept remaining matches in the temporary array as true and mark corre-

sponding forbidden areas in the mask.

7. Decrease Tc and Ts according to a predetermined schedule and go to Step 2.

3.3.1 Calculation of Support

In acceptance of a match, the support it collects from its neighborhood is a

very important metric. If a neighbor of the pixel is an accepted match, it delivers
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c=0.1

c=0.3

c=0.8

Figure 3.5. Support of a plane as a function of disparity gradient.

a certain support, else the candidate disparity in the temporary array is used.

From neighboring cites where both fail, no support is provided. Intuitively, we

expect that as the neighbor gets farther it should deliver less support since, the

probability that it belongs to a surface di�erent in depth, increases. Similarly,

those points that are close in disparity should supply more support. A function

which satis�es both constraints is the support function of Prazdny (See Eqn. 2.34).

Ignoring the normalisation constant, the support a disparity d(i; j) collects is

S(i; j) =
KX

x=�K

KX
y=�K

�i+x;j+ye
(di;j�di+x;j+y )

2

2c2(x2+y2) (3:5)

where �i0;j0 is 1 if there is an accepted or candidate disparity value available

at point (i0; j0) and 0 otherwise. In our stereo system, M = 4 and c = 0:3

values are used. In Figure 3.5 the support collected from a plane of disparities

passing through (i; j) is plotted against the disparity gradient for various values

of c. The choice of c = 0:3 roughly corresponds to a gradient limit of 0:5. The

computational complexity of the support function is greatly reduced by employing

appropriate look-up tables.

3.4 Edge Detection

For detecting intensity edges Canny operator with hysteresis threshold is

used which is available as a part of HVision Image Processing Package from
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Figure 3.6. Canny edges of fruits stereo pair

Harvard Robotics Laboratory. Since the direction of edges is not supplied by the

program, they are calculated separately as � = arctan(IH=IV ) at edgel positions

where IH and IV are horizontal and vertical gradients obtained by convolving the

image with the kernels

2
66664
�1 0 1

�1 0 1

�1 0 1

3
77775 and

2
66664

1 1 1

0 0 0

�1 �1 �1

3
77775 ; (3:6)

respectively. Edges detected by the Canny operator on fruits stereo pair (232x256)

with the default parameters of the system is shown in Figure 3.6.

3.5 Band-Pass Filtering

Westelius [80] lists the requirements for a band-pass �lter to be used for

phase matching, as follows:

� The �lter must not be sensitive to DC.

� The impulse response of the �lter must span a phase range of [��; �] without
any wrap around.

� The phase must increase monotonically.
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Figure 3.7. Right part of fruits stereo pair �ltered with WFP �lters of period 4,

8, 16, and 32 pixels.

� The �lter should allow only positive frequencies. This is necessary to obtain

a monotonically increasing phase.

� The singular points in the output of the �lter must cover as small an area

as possible.

� The size of the �lter must be as small as possible to keep the computational

cost small.

Among many possible complex band-pass �lters, WFP is preferred for the system.

M (see Eqn. 2.21) is chosen as 2�=!0 so that the window covers one period of
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Figure 3.8. Histograms of phase images for various �lter sizes.

ej!ox. The �lter has no DC but has some response in negative frequencies. On

the other hand, the spatial support of the �lter is small and this property is very

desirable for stereo matching. Figure 3.7 shows right part of fruits pair �ltered

with WFP �lters of period 4, 8 , 16 and 32 pixels. Figure 3.8 shows the histogram

of the phase images where it is clearly seen that the �lter has some bias towards

��=2.
The output of band-pass �lters can be used for other purposes as well, like

edge detection [133], texture analysis [134] and motion analysis [135], in a more

comprehensive vision system.
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3.6 Thin Plate Module

The functions of this module can be classi�ed as follows:

� To interpolate for regions where the former module could not �nd any

match: sometimes the information in higher frequencies may resolve ambi-

guities.

� To locate depth discontinuities accurately and explicitly: A binary line

process indicating depth discontinuities is determined. Since this process is

guided by intensity edges, which likely correspond to the location of depth

discontinuities, the accuracy is increased.

� To supply more accurate initial guesses to the upper level and to have sub-

pixel accuracy at the output of �nest level.

In pixel-matching module, any accepted match is meaningful in both images:

it corresponds to a certain pixel in each image. But since we use non-integer

values in thin plate module we need to create a dominant eye. The right image

disparities supplied from the pixel matching module is chosen to �t the sheet.

The best disparity �eld d(i; j) and line processes l(i; j) are found as the

minimum of the following energy function:

E = (�=4) f(1 � li;j+1) (di;j � di;j+1)(1 � li;j�1) + (di;j � di;j�1)

+ (1 � li+1;j) (di;j � (di+1;j) + (1 � li�1;j) (di;j � di�1;j))g2

� �
C�1X
k=0

cos(�r;ki;j � �l;ki+di;j ;j)

+ 
 hi;j fmax(0; jdi;j � oi;j j �R)g2

+ � li;j

+ " ei;j (1 � li;j) jrdi;j � ~nj: (3.7)

The constants �, �, 
, � and " re
ect the relative importance of various terms

of the energy function and their optimum values are determined experimentally.

Ignoring the binary �eld l(i; j) which indicate the existence of a discontinuity or

an occlusion at position (i; j), the �rst term reduces to

� f(di;j � (di;j+1 + di;j�1)=2) + (di;j � (di+1;j + di�1;j)=2)g2 (3:8)
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which is nothing but the squared magnitude of sum of the second derivatives of the

disparity �eld di;j at two orthogonal directions. This term imposes smoothness on

the reconstructed surface, but the line processes help circumvent the subversive

e�ects of smoothing near discontinuities of disparity �eld.

The second term penalizes the phase di�erences between the matched im-

ages which are expected to be very small for perfectly matched images. Here,

�x;k denotes the phase of band-pass �ltered image x in the k'th channel. The

subsection following this one is devoted to explanation of this term due to its

importance.

The third term tries to minimize the di�erence between the disparity �eld

and the disparity values supplied by the pixel matching module, oi;j's. hi;j is

unity if such a value is available at point (i; j). Since oi;j's are quantized to

integer values, a range R above and below these values are not penalized.

The last two terms are included to detect discontinuities. A discontinuity

l(i; j) is assigned unit cost � to prevent an excessive number of discontinuities.

The last term is the cost for disparity gradient rdi;j which is calculated using

kernels de�ned in Eqn. 3.6 and contributes the energy function only when there

is an intensity edge at (i; j), that is, ei;j is 1. ~n is the unit normal vector to the

edge; the dot product favors discontinuities when the directions of the intensity

edge and that of the disparity gradient are similar.

To �nd the minimumof this function we perform gradient descent. Initially,

d(i; j)'s are assigned available oi;j values. After every several iterations some

d(i; j)'s are interpolated where oi;j 's are not available. Actually, there are some


ags which indicate if there are any d(i; j) value and any �r;li;j values at (i; j), but

they are not shown in the energy function for the sake of simplicity and clarity.

The equations governing the gradient descent are:

@E

@di;j
= � ((1� li;j+1)di;j+1 + (1 � li;j�1)di;j�1

+(1� li+1;j)di+1;j + (1� li�1;j)di�1;j

�(4� li;j+1 � li;j�11� li+1;j � li�1;j) di;j)

� �
C�1X
k=0

sin(�r;ki;j � �l;ki+di;j ;j)(�
l;k
i+di;j+1;j � �l;ki+di;j ;j)

+ 
 hi;j 2max(0; jdi;j � oi;j j �R) sgn(di;j � oi;j) (3.9)
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and
@E

@li;j
= � � " ei;j jrdi;j � ~nj : (3:10)

In the second equation, the term resulting from the �rst term of Eqn. 3.7

is ignored. Since li;j is binary, it is set to 1 if Eqn. 3.10 is positive.

It is well known that gradient descent is not successful on non-convex energy

surfaces, especially on very complicated ones like that de�ned in Eqn. 3.7, when

applied directly. However, the initial value supplied, that is, the output of the

pixel-matching module, is very close to the global minimum of the function. As

a result, it is very unlikely that the gradient descent sticks into local minima.

By employing the pixel matching module, the necessity of using computationally

expensive methods, like simulated annealing, mean �eld annealing or graduated

non-convexity, is avoided.

3.6.1 The Phase Term

It is easy to show that the correlation of two signals l[n] and r[n],

Crl[x] = E fl[n] r�[n� x]g (3:11)

can be written in terms of the discrete Fourier transforms of the two signals, L[k]

and R[k], as

Crl[x] = F�1 fL[k]R�[k]g (3:12)

where

L[k] =
1

N

N�1X
n=0

l[n]e�jk(2�=N)n (3:13)

and

R[k] =
1

N

N�1X
n=0

r[n]e�jk(2�=N)n: (3:14)

Note that L[k] and R[k] can be interpreted as WFP �ltered versions of l[n] and

r[n], respectively. If the correlation is replaced with phase correlation, we obtain

Prl[x] = F�1

(
L[k]R�[k]

jL[k]j jR�[k]j
)

(3:15)

As a measure of the similarity of two signals l[n] and r[n], we need the quantity

Real fPrl[0]g =
N�1X
k=0

cos(�l;k � �r;k) (3:16)

46



where �l;k and �r;k are the phases of L[k] and R[k], respectively. The right-hand

side of this equation is very similar to the phase term of our energy function

with one major di�erence. The \channels" have constant absolute bandwidth,

so, the relative bandwidth decreases as the frequency gets higher. This has two

disadvantages. Firstly, if there exists even a small disparity gradient, the fre-

quencies of signals are scaled di�erently and, as a result, the phase di�erences

corresponding to di�erent frequencies of the signals are considered. Secondly,

since the amplitude spectrum of natural images generally decays with 1=f [24],

the low-frequency channels carry much energy when compared to high-frequency

channels. To overcome these disadvantages we use constant relative bandwidth

channels instead of constant absolute bandwidth channels.

3.6.2 Interpolation

During the stage of interpolation, unknown disparities whose at least 4

neighbors out of 8 are known (matched by the pixel matching module or interpo-

lated before) are assigned the average of the known neighboring disparities. The

\at least 4 out of 8" rule lets only convex areas to be interpolated. Note that

this stage is not a blind interpolation since interpolated disparities are later �ne

tuned by the membrane model using the smoothness constraint and phase values.

3.7 Detection of Occlusions

Due to the di�culty in formulating occlusions in the energy function, they

are detected independently. If there exists two disparity values d(i; j) and d(i; j+

k) such that

d(i; j)� d(i; j + k) � k � 1; k > 1; (3:17)

then l(i; j + 1); : : : ; l(i; j + k � 1) are set to 1 due to occlusion.

3.8 Increasing the Resolution of Disparity

Before supplying the output of the thin plate module to the pixel-matching

module of the higher channel, the number of pixels must be doubled in both

directions. The disparities at inserted pixels are obtained by averaging. If any

neighbor of such a pixel is unknown or is a discontinuity, that point is also labelled
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as unknown. Finally, all the disparity values are multiplied by 2 and quantized

to integer values. If the resulting integer disparity �eld contains pair of dispar-

ity values that violate uniqueness or orderness constraints, both disparities are

discarded.

3.9 Experimental Results

In this section, the results obtained by the system on several stereo image

pairs are presented. Images from di�erent domains are chosen so that powerful

and weak sides of the algorithm are evinced.

3.9.1 Fruits Stereo Pair

This 232x256 sized monochrome image pair, which originates fromDr. W. Ho�,

University of Illinois, contains many of the di�culties of stereo vision: repetitive

texture (the table cloth), textureless areas (surface of the melon), physical di�er-

ence across images (the 
y on the melon in only the right image) and large fusion

interval (-13 to 11). Figure 3.9 shows the outputs of both modules at 3 levels of

the hierarchy. It is clearly seen that the resulting disparity �eld is satisfactory

except small irregularities of depth discontinuities, false matches at upper part

of the mellon and small false match patches at upper corners of the image which

are all due to lack of texture. Figure 3.12 and Figure 3.11 are the occlusions and

depth discontinuities detected, and 3D-rendering of the �nal result.

In Figure 3.10 the results obtained by a one-level algorithm is presented for

demonstrating the e�ectiveness of coarse-to-�ne analysis. The repetetive texture

causes large false matching areas at upper right quarter of the image in one-

level algorithm. Besides, a comparison of Table 3.1 and Table 3.2 shows the

computational savings obtained by employing a coarse-to-�ne strategy.

3.9.2 Pentagon Stereo Pair

This 512x512 sized pair (See Figure 3.13) originates fromProf. Takeo Kanade

of Carnegie-Mellon University. This pair involves mostly frontoparallel surfaces

within a small fusion interval (-8 to 10; note that the size of the images is twice

that of Fruits pair), nevertheless accurate detection of discontinuities is di�cult.
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Figure 3.9. Results for Fruits stereo pair at 3 levels of the hierarchy. Left: Pixel

matching module outputs. Right: Thin plate module outputs.

The results at three levels of the algorithm and a 3D-rendering of the �nal re-

sult are shown in Figure 3.14 and Figure 3.15, respectively. Table 3.3 show how

computational complexity increases rapidly by image size.

3.9.3 Brutus Stereo Pair

This 188x144 sized by pair (See Figure 3.16) is obtained by clipping and

vertically lowpass �ltering the Brutus stereo pair from NEC Research Institute.

The results obtained by a two-level hierarchical algoritms and associated proces-

sor user time vales are shown in Figure 3.17 and Table 3.4, respectively. Also a

3D-rendering of the �nal result is shown in Figure 3.18. Here, a weakness of the
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Figure 3.10. The �nal result of one-level algorithm on Fruits.

58x64 116x128 232x256 Total

Gauss. Sm. and Sups. 0.6 2.6 - 3.2

Band-pass �lt. (T=4 pixels) 0.8 2.8 14.8 18.4

Band-pass �lt. (T=8 pixels) 1.4 5.6 21.2 28.2

Edge Detection 0.1 0.5 1.8 2.4

Pixel Matching Module 4.6 20.2 1:57.0 2:21.8

Thin Plate Module 4.0 17.1 1:08.6 1:29.7

Increasing Resolution 0.0 0.1 - 0.1

Total 11.5 48.9 3:43.4 4:43.8

Table 3.1. The user time spent for each module at each level of the hierarchy for

Fruits stereo pair.
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Figure 3.11. 3-D rendered view of the result on Fruits at the �nest level.
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Figure 3.12. The discontinuities and occlusions for Fruits stereo pair.

232x256

Gauss. Sm. and Sups. -

Band-pass �lt. (T=4 pixels) 14.8

Band-pass �lt. (T=8 pixels) 21.2

Edge Detection 1.8

Pixel Matching Module 3:51.2

Thin Plate Module 1:19.5

Increasing Resolution -

Total 5:48.5

Table 3.2. The user time spent for each module by one-level algorithm for Fruits

stereo pair.
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Figure 3.13. Pentagon Stereo Pair.

128x128 256x256 512x512 Total

Gauss. Sm. and Sups. 2.8 11.2 - 14.0

Band-pass �lt. (T=4 pixels) 4.0 15.8 1:03.4 1:23.2

Band-pass �lt. (T=8 pixels) 6.0 24.0 1:34.8 2:04.8

Edge Detection 0.6 2.2 8.5 11.3

Pixel Matching Module 17.2 1:38.4 8:31.6 10:27.2

Thin Plate Module 20.6 1:28.9 6:01.9 7:51.4

Increasing Resolution 0.1 0.5 - 0.6

Total 51.3 4:01.0 17:20.2 22:12.5

Table 3.3. The user time spent for each module at each level of the hierarchy for

Pentagon stereo pair.
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Figure 3.14. Results for Pentagon stereo pair at 3 levels of the hierarchy. Left:

Pixel matching module outputs. Right: Thin plate module outputs.
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Figure 3.15. 3-D rendered view of the result on Pentagon at the �nest level.
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Figure 3.16. Brutus Stereo Pair.

algorithm can be seen: the disparity �eld spreads into textureless areas.
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Figure 3.17. Results for Brutus stereo pair at 2 levels of the hierarchy. Left: Pixel

matching module outputs. Right: Thin plate sheet module outputs.
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Figure 3.18. 3-D rendered view of the result on Brutus at the �nest level.
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96x72 188x144 Total

Gauss. Sm. and Sups. 2.4 - 2.4

Band-pass �lt. (T=4 pixels) 1.6 6.2 7.8

Band-pass �lt. (T=8 pixels) 2.4 9.6 12.0

Edge Detection 0.2 0.9 1.1

Pixel Matching Module 9.9 46.2 56.1

Thin Plate Module 6.9 27.0 33.9

Increasing Resolution 0.0 - 0.0

Total 23.4 1:29.9 1:53.3

Table 3.4. The user time spent for each module at each level of the hierarchy for

Brutus stereo pair.
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CHAPTER IV

CONCLUSIONS

4.1 Conclusions

In this thesis, a stereo correspondence system which adopts a hierarchi-

cal structure is presented. In each scale, a pixel-matching module and a thin

plate module are employed. The former utilizes normalized cross-correlations as

matching primitives. Since the correlation size is chosen as small as 5x5, the

associated computational cost is low. Besides, the problems of correlation due to

disparity gradient and depth discontinuities are kept minimum. The ambiguities

are resolved through a neighborhood support function and through spreading of

constraints. The smoothness constraint is not used in this module, instead, a

neighborhood support function, which works well even in the close neighborhood

of depth discontinuities, is employed. The spreading of constraints works as fol-

lows: Only unambiguous matches are accepted as true and they constrain their

neighbors by using uniqueness and orderness constraints which in turn cause some

previously ambiguous matches to be unambiguous. The combination of the sup-

port function and spreading of constraints proves to be powerful: false matches

are very rare.

The thin plate module tries to match subpixel primitives, which are phases

of band-pass �ltered images from several frequency channels, while interpolat-

ing small convex areas and detecting the discontinuities and occlusions explicitly.

The piece-wise continuous surface is constrained by the disparities found by the

pixel-matching module. The thin plate is expressed as a cost function whose min-

imum is searched using gradient descent method. This method generally sticks

into local minima when applied to non-convex energy functions, especially to

complicated energy functions like this one. However, guidance of pixel matches



prevents this problem. Intensity edges detected by Canny operator helps detec-

tion of discontinuities.

The system obtains the �nal results within several minutes on a SPARCsta-

tion 2 and can be implemented in parallel hardware. Though it is not absolutely

error-free, it succeeds on various kinds of images with a very small ratio of false

matches. The problems associated with repetitive texture and with lack of tex-

ture are mostly solved by spreading of constraints and by coarse-to-�ne strategy.

Discontinuities and occlusions are generally detected, though the accuracy is not

satisfactory.

Most of the known stereo algorithms are successful on certain kinds of im-

ages. The robustness of this system is shown on outdoor and indoor images with

large disparity limits and with large disparity discontinuities: the ratio of false

matches is small for all cases. Explicit detection of discontinuities and occlusions

and subpixel resolution disparity map are two other outstanding properties of the

system.

4.2 Directions For Further Research

Although the system developed is robust, it still makes false matches and

it cannot detect discontinuities accurately. Some possible improvements on the

existing system are as follows:

� Feature matching will probably increase the speed and accuracy of the

system. Matching of features can easily be cooperatively integrated into

the pixel-matching module.

� Fleet et al. [79] showed that the phase of band-passed �ltered images be-

haves pathologically at and near discontinuities and proposed to detect such

areas. Since the phase is not reliable in these areas, the suppression of the

phase term there may improve the results.

� Detecting edges cooperatively or using active contours will lead to better

discontinuity detection. Besides intensity discontinuities, texture edges and

illusory contours can be taken into consideration. Also, edges detected as

depth discontinuities can be tracked in scale space.
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