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Mürüvvet Büyükboyacı† Serkan Küçükşenel ‡
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Abstract

We theoretically investigate the effect of allowing one-sided communication with

costless indirect messages on stag-hunt game outcomes. Since Heinemann et al. (2009)

show that players who avoid risk also avoid strategic uncertainty, we chose a sender’s

level of risk aversion as the indirect message. We show that if both sender and receiver

interpret the message content similarly, it is possible that they can end up either on

the risk-dominant or on the payoff-dominant equilibrium. We also show that players

in the extreme risk groups are willing to declare risk attitudes truthfully to increase

the probability of coordination. On the other hand, players in the medium risk-averse

group are willing to mimic the risk loving group to achieve efficient coordination.
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1 Introduction

We analyze the outcome of a stag-hunt game with pre-play one way costless communication.

One of the players, sender, is given the chance to signal her risk attitude to the other player,

receiver, before playing the game. The signal about the player’s risk attitude is indirect and

requires interpretation. Such an indirect signal is important for the game when the payoffs

from the game are monetary and strategic risk exists in the game. In a stag-hunt game (Table

1), players choose between strategically safe (“A”) and risky (“B”) actions. The possible

outcomes for this game are: the payoff-dominant equilibrium (B, B), the risk-dominant

equilibrium (A, A), and out of equilibrium: (A, B) and (B, A).

Table 1: 2x2 Stag-Hunt Game

A B

A 570, 570 570, 70

B 70, 570 770, 770

An indirect signal about a player’s risk attitude may affect a player’s action (hence

the game outcome) for the following reasons: First, there is a relationship between risk

and strategic uncertainty. According to Knight (1921) there are two kinds of uncertainty:

exogenous uncertainty or risk with given a priori probabilities for all possible states of the

world (i.e., lotteries), and endogenous uncertainty given by the lack of such probabilities.

Heinemann et al. (2009) found that players who avoid risk also avoid strategic uncertainty.1

Since there is a strategic risk in the game shown in Table 1, giving a player a chance to send

a message about her risk attitude may be beneficial for achieving efficient coordination.

Second, agents’ utility representations differ according to their risk aversion. In the game,

risk-averse, risk-neutral, and risk-loving agents expect different payoffs from playing “A” (or

“B”) for the same belief about the other person’s action choice. Hence, their optimal action

choices may change as a response to their beliefs: It may be optimal for a risk-averse agent

to play “A” even when she thinks that her opponent plays “A” with a low probability. On

1Strategic uncertainty is defined in Heinemann et al. (2009) as uncertainty concerning purposeful behavior

of players in an interactive decision situation. See also Bohnet and Zeckhauser (2004), Schechter (2007) and

Lange et al. (2011) for more on the relationship between risk-aversion and uncertainty in strategic games.
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the other hand, it may be optimal for a risk-loving agent to play “A” only when she thinks

that her opponent plays “A” with a high probability. This difference stems from the concave

(convex) utility function of a risk-averse (risk-loving) agent. Similarly, when a player gets a

signal about how risk averse the other person is, she may form her beliefs accordingly. She

may expect a risk-averse (risk-loving) opponent to play “A” with a higher (lower) probability

and best respond to her belief by playing “A” (“B”).

In this paper, we characterize a perfect Bayesian equilibrium in which agents can use

such a message stage to achieve coordination. In the model, we first assume that players

belong to one of three groups according to their risk aversion: Group 1 is the risk-loving

group, Group 2 is the medium risk-averse group, and Group 3 is the most risk-averse group.

Given a player knows her own group but only the risk aversion distribution of the other

player, one of the players, sender, has a chance to send a message to her opponent. This

message does not have to be truthful. We define a system of beliefs such that the receiver

always believes that the message is true. 2 After the costless message stage, agents choose

their strategies for the game in Table 1. We show that under these conditions, in a Perfect

Bayesian equilibrium, a sender, who is in Group 1 or Group 2, sends Group 1 message, and

she plays the risky action, “B”, afterwards. A Group 3 sender sends Group 3 message and

plays the safe action, “A”, afterwards. A receiver, who receives Group 1 (Group 3) message,

plays “B” (“A”). This implies that a sender in extreme risk groups (Group 1 and Group 3)

is willing to declare her risk attitude truthfully to increase the probability of coordination.

On the other hand, a sender in the medium risk-averse group (Group 2) is willing to mimic

the risk loving group to achieve efficient coordination.

2 Analysis

We now provide a model to show that coordination can be achieved with the possibility of

indirect communication. We assume that there are two players: a sender (S) and a receiver

2There can be many outcomes in this game, i.e., players can end up with coordination failure. By assuming

that the receiver believes the message is truthful and the sender sends a message strategically to increase

their coordination in either equilibrium, the coordination problem in an equilibrium can be overcome.
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(R). We label the sender as player 1 and the receiver as player 2. Player i has a risk aversion

parameter, ri, belonging to one of 10 different risk categories, where each category consists of

continuously divided intervals in R.3 If ri is in risk categories 1, 2, 3 or 4, we say that player i

is in Group 1. If ri is in risk categories 5, 6 or 7, we say that player i is in Group 2. Moreover,

ri is in risk categories 8, 9 or 10 implies that player i is in Group 3. We say that player i ∈
risk category k if ri ∈ [Lk, Uk) where ∪k=10

k=1 [Lk, Uk) = R. For each risk category, we define a

representative risk aversion parameter which is equal to the average of the upper and lower

bound for that category.4 Each player only knows her own risk aversion parameter and

the probability distribution of the other player’s risk aversion. Due to observed data in risk

elicitation experiments using the Holt and Laury method5, we assume that all individual risk

aversion parameters are normally distributed with a mean of 0.28 and a standard deviation

of 0.25.

The sender has an option to send a message m from the set of feasible messages M . Let

M = {Group 1, Group 2, Group 3} be the set of feasible messages and M = M ∪ ∅. An

empty message, ∅, represents the no message option for the sender. The receiver observes the

message coming from the sender. With this knowledge, each agent simultaneously chooses

the safe or the risky action for the game in which monetary payoffs in Table 1 are converted

into CRRA utilities where the utility of a player i is ui(x) = x1−ri

1−ri , in which x is a monetary

payment and ri is the risk aversion coefficient.

3These 10 intervals are similar to the intervals in Holt and Laury (2002).
4These representative risk aversion parameters can be seen in Table 2. For the first and last risk categories

we take 1 below the upper bound and 1 above the lower bound respectively.
5We determine the distribution according to observed proportions in low-real treatment of Holt and Laury

(2002).
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Table 2: Risk Categories and Representative Risk Aversion Parameter

Risk Category k Group [Lk, Uk) Representative

Risk Aversion Parameter

1 1 [−∞,−0.95) −2

2 1 [−0.95,−0.49) −0.72

3 1 [−0.49,−0.15) −0.32

4 1 [−0.15, 0.15) 0

5 2 [0.15, 0.41) 0.28

6 2 [0.41, 0.68) 0.55

7 2 [0.68, 0.97) 0.83

8 3 [0.97, 1.37) 1.17

9 3 [1.37, 1.53) 1.45

10 3 [1.53,∞) 2.5

2.1 Results

The game is symmetric for the agents who belong to the same risk category but there is an

asymmetry in utilities if the agents do not belong to the same risk category. A pure strategy

perfect Bayesian equilibrium is a system of beliefs6 and profile of strategies (m∗, s∗1, s
∗
2) which

are best responses to each other while maximizing the following conditional expected payoff

for each player’s each possible risk aversion coefficient after the communication stage:

si ∈ argmax{A, B}Er−i
Ui(si, s

∗
−i(r−i), ri|m∗ ∈M). (1)

Let us denote the equilibrium probability that player 2 plays “A” after a message m ∈ M
given player 2’s type is r2 by p2. Given this belief

Er2U1(s1 = A, s∗2(r2), r1|m ∈M) =
5701−r1

1− r1
(2)

and

Er2U1(s1 = B, s∗2(r2), r1|m ∈M) = p2
701−r1

1− r1
+ (1− p2)

7701−r1

1− r1
. (3)

6See Mas-Colell et al. (1995) for a formal definition of system of beliefs in dynamic games.
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So, playing “A” is optimal for player 1 if:

5701−r1 > p2701−r1 + (1− p2)7701−r1 . (4)

In other words, playing “A” is optimal for player 1 if p2 >
7701−r1−5701−r1

7701−r1−701−r1
:= F (r1) or taking

the inverse of the function F if r1 > F−1(p2). By symmetry of monetary payoffs player 2 will

have a similar equilibrium strategy, i.e., “A” is optimal for player 2 if p1 >
7701−r2−5701−r2

7701−r2−701−r2
=

F (r2) or r2 > F−1(p1). Note that F (r) = 7701−r−5701−r

7701−r−701−r is decreasing in r.

The above arguments imply that the equilibrium follows a certain pattern: Player i

from risk category k plays “B” if ri ∈ (−∞, r∗k) and plays “A” if ri ∈ [r∗k,∞) .7 Given

such an equilibrium strategy, the probability that the other player, player −i, plays “A” is

p−i = P (r−i > r∗k). For a category representative risk parameter, one can find bounds for

p−i. Since it is assumed that the distribution of risk parameters is N(0.28, 0, 25), we can

also find the cut off values, r∗k, for each risk category k. If player i belongs to the first risk

category, it is optimal for her to play “A” if her belief about her opponent’s safe action choice

is higher than 0.59 = F (−2).8 This implies that player i in the first risk category believes

that her opponent chooses “A” if r−i > r∗1, chooses “B” if r−i < r∗1. The highest belief that

leads a player in the first category to choose “B” is 0.58, i.e., Prob(r−i < r∗1|ri = −2) = 0.58.

Given that risk aversion distribution is N (0.28, 0.25), r∗1 can be found as 0.33. Given the

equilibrium beliefs in each risk category, the cut off risk aversion parameters r∗2, r
∗
3, r

∗
4, r

∗
5,

r∗6, r
∗
7, r

∗
8, r

∗
9 and r∗10, can be found as 0.22, 0.18, 0.14, 0.1, 0.06, 0.02, −0.04, −0.09, and

−0.23 respectively.9

By using Table 2 and these cut off parameters, player i from risk category 1 (r∗1 = 0.33)

plays “B” if r−i ∈ (−∞, L6) and plays “A” if r−i ∈ [L6,∞). That is, player i plays the risky

action if she thinks that the other player belongs to the first five risk categories, and plays

the safe action if she thinks that the other player belongs to the last five risk categories.

7We assume without loss of generality that player i plays “A” whenever she is indifferent.
8The critical value is found using the representative risk aversion parameter for the 1st risk category in

Table 2. The critical beliefs for the 2nd, 3rd, 4th, 5th, 6th,7th, 8th, 9th and 10th risk categories are 0.41, 0.34,

0.29, 0.24, 0.19, 0.15, 0.1, 0.07, and 0.02 respectively.
9If the cut off we found for the risk category is above (below) the representative risk aversion parameter

for that category, we assume the agent plays “B” (“A”) for that category.
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Thefore, the critical level of opponent’s risk category to switch from playing the risky action

to playing the safe action is risk category 6 for the player. Similarly, the critical level of

opponent’s risk category is 5 for a player belonging to risk categories 2 ≤ k ≤ 7, and it is

risk category 4 for a player belonging to risk categories 8 ≤ k ≤ 10.

Given these optimal strategies for the last stage of the game, we can find the optimal

messages for the communication stage. Suppose that Group 1 message is received and the

receiver believes that this message is truthful. That is, the sender’s risk category is either

1, 2, 3, or 4. Then, it is optimal for a receiver belonging to risk categories 1 ≤ k ≤ 7 to

play “B” by the definition of the equilibrium strategy. Note that the the critical level of

sender’s risk category 4 for a receiver belonging to risk categories 8 ≤ k ≤ 10. The expected

utility of playing “A” for player 2 (receiver) in risk category 8 (r2 = 1.17) is EU2(s
∗
1(r1), s2 =

A, r2|m = Group 1) = 5701−r2

1−r2 and the expected utility of playing “B” is EU2(s
∗
1(r1), s2 =

B, r2|m = Group 1) = prob(r1 ≤ −0.32|m = Group 1)770
1−r2

1−r2 + prob(r1 ∈ (−0.32, 0)|m =

Group 1)70
1−r2

1−r2 . Therefore, choosing “A” is optimal for player 2 in risk categories 8, 9,

and 10 since EU2(s
∗
1(r1), s2 = A, r2|m = Group 1) ≥ EU2(s

∗
1(r1), s2 = B, r2|m = Group

1). Thus, expected utility of player 1 (sender) by sending Group 1 message is EU1(s1 =

B, s∗2(r2), r1|m = Group 1) = prob(r2 ≤ 0.83)770
1−r1

1−r1 + prob(r2 ≥ 0.83)70
1−r1

1−r1 . Note that

EU1(s1 = B, s∗2(r2), r1|m = Group 1) > 5701−r1

1−r1 for a sender in Group 1 and Group 2. This

implies that it is optimal for Group 1 and Group 2 senders to send Group 1 message and thus

convey their intentions to play “B” (the risky action) rather than sending another message

m′ ∈ M\{Group 1} and playing the safe action. However, Group 3 sender will not mimic

other groups since EU1(s1 = B, s∗2(r2), r1|m = Group 1) < 5701−r1

1−r1 for all risk categories

such that k ≥ 8.10 This implies that Group 3 sender sends Group 3 message to convey

her intention to play “A”, the safe action.11 Therefore, pre-play indirect communication

10We assume that there is a pre-play communication whenever the sender is indifferent.
11A belief system is defined using Bayes’ rule for the possible risk category nodes at the risk group

information set on the equilibrium path. Moreover, off the equilibrium path beliefs are defined such that

belief [1] is assigned to the highest risk category node, and belief [0] is assigned to the other nodes at the risk

group information set. For example, given that information set Group 1 is on the equilibrium path, positive

beliefs are assigned only to risk category nodes 1, 2, 3, and 4 using the prior, and belief [0] is assigned to risk

category nodes 5, 6, 7, 8, 9, and 10. At the information set Group 2 (3) off the equilibrium path, belief [1] is
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about risk attitudes can be used as a coordination device on both types of equilibrium. This

completes the proof of the following result:

Proposition 1 There exists a perfect Bayesian equilibrium in which a sender, who is in

Group 1 or Group 2, sends Group 1 message and plays the risky action, “B”, afterwards.

A Group 3 sender sends Group 3 message and plays the safe action, “A”, afterwards. A

receiver, who receives Group 1 (Group 3) message, plays “B” (“A”).

3 Conclusion

In this paper, we present a stag hunt game in which agents are allowed to communicate

with each other before playing the game through indirect messages. In this set up, we

characterize a perfect Bayesian equilibrium in which agents use this type of messages to

achieve coordination. We find that allowing players to use such indirect messages can be

used as a coordination device on both equilibria. We also show that the extreme risk groups,

risk loving group (Group 1) and the most risk-averse group (Group 3), are willing to declare

risk attitudes truthfully to increase the probability of coordination. The medium risk-averse

group are willing to mimic the risk loving group to achieve efficient coordination, and hence

maximize the expected return. These results also provide a theoretical background for the

experimental test of hypothesis 3 in Büyükboyacı and Küçükşenel (2017).
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