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1 Introduction

An assignment game is a special case of two-sided matching markets in which

monetary transfers are allowed. In this market, agents on one side of the market

are matched with the other agents on the other side of the market. We label

without loss of generality these two sides as firms and workers. The matching is

one to one and monetary transfers (wage payments) are allowed. Since the only

allowed matching type is one to one, a worker can only be matched (or work) to

one firm, and each firm can employ only one worker. One commonly used solution

concept for such markets is the core. The core outcomes specify which bilateral

employment agreements we can expect to observe, and how the agents divide their

gains. In this paper, we construct the first algorithm that reaches to the all core

outcomes for assignment games with money.

Shapley and Shubik (1972) show that every assignment game has non-empty

core and core payoffs have a nice structure. The payoff structure is a non-empty

complete lattice, and there is a polarization of interests in the core. This means

that there is a stable outcome which is the most preferred by every agent on one

side of the market and at the same time it is the least preferred by every agent on

the other side of the market. Geometrically, the core is a closed, convex polyhedron

whose dimension is equal to at most the minimum of the number of members in

one group or in the other (Shapley and Shubik (1972)).

Kucuksenel (2011) constructs a map T on the set of feasible payoffs such that the

set of fixed points of T is equal to the core outcomes. In this paper, we construct

the first algorithm to find all core outcomes by iterating T for the assignment

game. This type of fixed point argument has been used in assignment problems

with side payments before, but they only characterized certain points in the interior

of the core (a subset of the core—symmetrically bargained allocations) as stationary

points of a rebargaining process between players (Rochford (1984)). Moreover, fixed

point methods have been used in matching markets without side transfers (NTU

games), see for example Adachi (2000), Echenique and Oviedo (2004), Echenique

and Oviedo (2006) or Echenique and Yenmez (2007) for applications of a fixed

point approach for different environments. The algorithms to find core outcomes

are also provided in mentioned studies related to assignment problems without side

transfers. Different algorithms to find only extreme points of core outcomes in
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two-sided matching problems with one-way monetary transfers are also provided

(Afacan (2013), Abizada (2016)).

The organization of the rest of the paper is as follows: In the next section, we

give a brief introduction to the Shapley and Shubik assignment game and provide

some of the well-known results using linear programming formulation. In Section 3,

we present the formulation in Kucuksenel (2011) to represent the core as fixed points

of a map. In Section 4, we introduce the algorithm and show that the algorithm

reaches to the all possible core outcomes in the assignment games. Section 5 shows

that the extension of the formulation using core outcomes is not possible. The

discussion and future research agenda follows in Section 6.

2 Assignment games with money

This section gives a brief description of the assignment games and provides some

well-known results via linear programming proofs. We refer the reader to Shapley

and Shubik (1972) or Roth and Sotomayor (1990) for more discussion and jus-

tification of the setup. Our exposition mainly follows Kucuksenel (2011) in this

section.

The game in coalitional function form with side payments is defined by three-

tuple Γ = 〈F,W, α〉 where

1. F = {f1, ..., fm} is a set of firms,

2. W = {w1, ..., wn} is a set of workers,

3. α is a m×n matrix of nonnegative numbers {αfw ∈ R+ : (f, w) ∈ F ×W} where

αfw is the value of pairwise partnership. Note that αkk = 0 for all k ∈ F ∪W .

An assignment µ : F ∪W → F ∪W is a one-to-one mapping of order two (that

is µ2(k) = k) such that if µ(f) 6= f then µ(f) ∈ W and if µ(w) 6= w then µ(w) ∈ F .

Let M be the set of all assignments. An assignment µ can also be represented as

a vector x ∈ {0, 1}F×W , such that xfw = 1 if µ(f) = w and xfw = 0, otherwise.

Hence,
∑

w∈W xfw ≤ 1 for all f ∈ F and
∑

f∈F xfw ≤ 1 for all w ∈ W .

An assignment x is optimal if for all x′ ∈M,
∑

(f,w)∈F×W αfwxfw ≥
∑

(f,w)∈F×W αfwx
′
fw.

Let X be the set of optimal assignments. The optimal assignment is usually unique.

If there is more than one optimal assignment, a slight perturbation of the values of

the pairwise partnerships will result in a unique optimal assignment.
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Any agent is free to remain single and receive zero, and the worth of an arbi-

trary coalition equals to the sums of the pairwise coalitions it can form with pairs

consisting of one agent from F and one from W . That is for all coalitions S,

V (S) =


0 if |S| = 0 or 1

0 if S ⊆ F or S ⊆ W

maxµ:F∩S→W∩S
∑

f∈F∩S αfµ(f) if |F ∩ S| ≤ |W ∩ S|
maxµ′:W∩S→F∩S

∑
w∈W∩S αµ(w)w if |F ∩ S| ≥ |W ∩ S|.

Definition 1 The pair of vectors (u, v), with u ∈ Rm and v ∈ Rn, is a feasible

payoff for Γ = 〈F,W, α〉 if there is an assignment x such that∑
f∈F

uf +
∑
w∈W

vw =
∑

(f,w)∈F×W

αfwxfw.

In this case we say (u, v) and x are compatible with each other, and we call

((u, v);x) a feasible outcome.

Definition 2 A feasible outcome ((u, v);x) is stable (or the payoff (u, v) with an

assignment x is stable) if

(i) uf ≥ 0, vw ≥ 0 (individual rationality)

(ii) uf + vw ≥ αfw for all (f, w) ∈ F ×W.

Note that condition (ii) only eliminates deviations by pair of agents since the

set of pairwise stable outcomes coincides with the set of group stable outcomes in

this framework. Let S(Γ) be the set of stable payoffs.

Consider just the assignment problem for the coalition of all players:

(AP)

max z =
∑

(f,w)∈F×W

αfwxfw

s.t.
∑
w∈W

xfw ≤ 1 ∀ f ∈ F,

∑
f∈F

xfw ≤ 1 ∀ w ∈ W,

xfw ≥ 0 ∀ (f, w) ∈ F ×W.
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This optimization problem is associated with dual linear program having the form:

(DAP)

min d =
∑
f∈F

uf +
∑
w∈W

vw

s.t. uf + vw ≥ αfw ∀ (f, w) ∈ F ×W,

uf , vw ≥ 0.

Therefore, (DAP) formulates the problem of finding payoff vectors in the core of the

assignment game. The existence of optimal solutions of (AP) and duality theorem

show that the set of stable payoff vectors is nonempty. Moreover, in the game the

set of stable outcomes and the core are the same.

Theorem 1 (Shapley and Shubik (1972)) The core of an assignment game is

nonempty and is precisely equal to the set of solutions of the (DAP).

3 The T Mapping

In this section, we present the formulation in Kucuksenel (2011) that fully char-

acterize the core as the set of fixed points of a certain function. We assume that

|F | = |W | = n to simplify the formulation. We shall also assume that for all i ∈ F
ui ∈ {0, 1, ...,maxj∈W αij} and for all j ∈ W vj ∈ {0, 1, ...,maxi∈F αij} to make the

payoff space discrete. These assumptions simplify the notation, but all results hold

without these assumptions.

We can now proceed to define the formulation by following the identical math-

ematical notation in Kucuksenel (2011). A firm-permutation is a bijection πF from

F to F , and a worker-permutation is a bijection πW from W to W . This type of

permutations is useful in defining the order of agents. We denote π−1f (i) ∈ F as the

i-th firm and π−1w (j) ∈ W as the j-th worker. Let Y be the set of possible payoffs

such that:

Y = {((ui)i∈F , (vj)j∈W ) | ∀i ∈ F, 0 ≤ ui ≤ max
j∈W

αij ; ∀j ∈ W, 0 ≤ vj ≤ max
i∈F

αij}.

Given (u, v), πF , and πW , let

U(uπ−1
F (i), v) = max

j∈W i
(απ−1

F (i)j − vj),
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V (u, vπ−1
W (j)) = max

i∈F j
(αiπ−1

W (j) − ui),

where W 1 = W and for all i ≥ 2

W i = W i−1 \min{j : j ∈ argmax(απ−1
F (i−1)j − vj)},

and F 1 = F and for all j ≥ 2

F j = F j−1 \min{i : i ∈ argmax(αiπ−1
W (j−1) − ui)}.

It is possible that the outcome of the mapping depends on the order of players.

For some (u, v) ∈ Y , the outcome of the mapping does not depend on the exact

order of players. Let (u, v) ∈ F if there exists a tie breaking rule, πF , such that

for all i ∈ F , πF (i, argmaxj∈W (αij − vj)) ∈ W i. We call πF a firm-consistent tie

breaking rule. If there is a firm-consistent tie breaking rule, U(.) is independent of

the order of firms. That is, U(ui, v) = maxj∈W i(αij − vj) = maxj∈W (αij − vj). Let

(u, v) ∈ W if there exists a worker-consistent tie breaking rule, πW , such that for all

j ∈ W , πW (j, argmaxi∈F (αij − ui)) ∈ F j. This implies V (.) is independent of the

order of workers. Thus, V (u, vj) = maxi∈F j(αij − ui) = maxi∈F (αij − ui). If there

exist both firm and worker consistent tie breaking rules, then let (u, v) ∈ B. Hence,

B = F ∩ W . Let also (u, v) ∈ Z if and only if there does not exist any types of

consistent tie breaking rules. We call F as the set of firm-order independent payoffs,

W as the set of worker-order independent payoffs, B as the set of order independent

payoffs, and Z as the set of order dependent payoffs. Note that Z = Y \(F∪W). If

(u, v) 6∈ F ((u, v) 6∈ W), we use a fixed tie breaking rule πF (i, S) = min{j : j ∈ S}
for all S ⊆ W ( πW (j, S) = min{i : i ∈ S} for all S ⊆ F ). We refer the reader to

Kucuksenel (2011) for more details and examples related to the tie breaking rules.

Let T : Y → Y be a mapping such that Ti(u, v) = U(ui, v) ∨ 0 if i ∈ F and

Tj(u, v) = U(u, vj) ∨ 0 if j ∈ W . Moreover, denote E(T ) = {(u, v) ∈ Y : (u, v) =

T (u, v)} as the set of fixed points of T , and EA(T ) = {(u, v) ∈ A ⊆ Y : (u, v) =

T (u, v)} be the set of fixed points of T in the set of payoffs A ∈ {F ,W ,B,Z}.
Given a payoff vector (u, v), T first searches for consistent tie breaking rules. If it

is not possible to find a consistent tie breaking then T uses the tie breaking rule

defined for the set of order dependent payoffs.

The main result about the mapping can now be stated. The following result

shows that the core (or stable) payoffs of the assignment game are equal to the set
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of fixed points of the aforementioned mapping. Note that core outcomes are the

Cartesian product of the core payoffs and the set of optimal assignments.

Proposition 1 (Kucuksenel (2011)) EB(T ) = S(Γ) = C(Γ).

We know define the following binary relation �F on Y .

Definition 3 Let (u, v) ∈ Y . Define a partial ordering �F by

(u, v) �F (u′, v′)⇔ (u, v) ≥F (u′, v′) and (u′, v′) ≥W (u, v).

The following lemma about the structure of the core is useful for the next section.

Lemma 1 Let (u, v) ∈ EB(T ), (u′, v′) ∈ EB(T ), and (u, v) �F (u′, v′). If uf −u′f =

t, then there is w ∈ W such that v′w − vw = t.

Proof. Since (u, v) ∈ B and (u′, v′) ∈ B, T is order independent. Tf (u, v) =

maxw∈W (αfw− vw)∨ 0 = uf and Tf (u
′, v′) = maxw∈W (αfw− v′w)∨ 0 = u′f = uf − t.

This implies uf = maxw∈W (αfw − v′w + t). Therefore, there is w ∈ W such that

vw = v′w − t.

4 The New Algorithm

The T-algorithm uses the formulation of T mapping. It starts at some (u, v) ∈ Y
and iterate T (u, v) until two iterations are identical. The algorithm stops when

two iterations are identical (T (u, v) = (u, v)). We prove that when the algorithm

stops, it must be at a stable payoff. Moreover, we show that all stable payoffs can

be reached through by extending the algorithm. The main intuition behing the

T-algorithm is similar to the one in Echenique and Oviedo (2006).

T-algorithm:

1. Set (u0, v0) = (u, v) where (u, v) ∈ Y . Set (u1, v1) = T (u0, v0) and k = 1.

2. While (uk, vk) 6= (uk−1, vk−1), do:

(a) set k = k + 1

(b) set (uk, vk) = T (uk−1, vk−1).

3. Set τ = (uk, vk). Stop.
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Proposition 2 If the T-algorithm stops at τ ∈ B, then τ is a stable payoff. If

(uk, vk) is in the set of stable payoffs, for some iteration k of the T-algorithm, then

the algorithm stops at τ = (uk, vk).

Proof. If the algorithm stops at τ ∈ B, then (uk, vk) = (uk−1, vk−1) = τ . Then,

τ = T (uk−1, vk−1) = T (τ), so τ ∈ E(T ). By Proposition 1, τ ∈ S(Γ). Moreover,

by the formulation of Shapley and Shubik (1972), there is an optimal assignment x

such that (τ ;x) ∈ C(Γ). To prove the second part, observe that if (uk, vk) is a sta-

ble payoff, then (uk, vk) is a fixed point of T by Proposition 1. Then the algorithm

stops at τ = (uk, vk).

We now provide the second algorithm to find all core payoffs. Let

(ūY , vY ) = (max
w∈W

αf1w, ...,max
w∈W

αfnw, 0, ..., 0),

(uY , v̄Y ) = (0, ..., 0,max
f∈F

αfw1 , ...,max
f∈F

αfwn).

Moreover, let enl be the l-th unit vector in Rn, i.e. enl = (0, ...1, 0, ..., 0) ∈ Rn, where

1 is the l-th element of enl .

Algorithm 2:

1. Set (u0, v0) = (ūY , vY ). Set (u1, v1) = T (u0, v0) and k = 1.

2. While (uk, vk) 6= (uk−1, vk−1), do:

(a) set k = k + 1

(b) set (uk, vk) = T (uk−1, vk−1).

3. Set τ = (uk, vk).

4. Let Ê = τ . The possible states of the algorithm is Y . Start at state Ω0 where

Ω0 = {(ūY ∧ uk + enl , 0 ∨ vk − enm), (0 ∨ uk − enl , v̄Y ∧ vk + enm)} ⊂ Y

for all 1 ≤ l,m ≤ n. Let the state of the algorithm be Ω. While Ω′ 6= ∅ do the

following subroutine to get a new state Ω′. Then set Ω = Ω′.

SUBROUTINE: Let Ω′ = ∅. For each (u, v) ∈ Ω, run T (u, v). If T (u, v) = (u, v)

and (u, v) ∈ B add (u, v) to Ê and add {(ūY ∧ u+ enl , 0 ∨ v − enm), (0 ∨ u− enl , v̄Y ∨
v + enm)} \ Ê for all 1 ≤ l,m ≤ n to Ω′.
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Theorem 2 The set Ê produced by Algorithm 2 coincides with the core payoffs

S(Γ) of the assignment game.

Proof. First I prove that the algorithm reaches a fixed point after a finite k number

of iterations. Then, we know that τ = (uk, vk) ∈ S(Γ) by Proposition 2. Then I

show that Ê ⊆ S(Γ), and S(Γ) ⊆ Ê by using direct proofs.

We want to show that the first part of Algorithm 2, T-algorithm, reaches a

fixed point. That is for some finite k, τ = (uk, vk) = (uk−1, vk−1). Assume this

does not hold for any k. Then, {(uk, vk)} is an infinite sequence of distinct payoffs

in Y . However, there exists a finite number of payoffs that is for all f ∈ F uf ∈
{0, 1, ...,maxw∈W αfw} and for all w ∈ W vw ∈ {0, 1, ...,maxf∈F αfw}, contradicting

to the initial assumption. This implies there is k <∞ such that T-algorithm reaches

a fixed point.

Now we show that the rest of Algorithm 2 stops after a finite number of steps.

Let M ⊆ Y be the collection of states visited by the algorithm. Let d1(Ω), where

Ω ⊆ M , be the minimum of the Euclidean distance between payoffs in Ω and

(ūY , vY ) and d2(Ω) be the minimum of the Euclidean distance between payoffs in

Ω and (uY , v̄Y ). If Ω = ∅, let d1(Ω) = d2(Ω) = 0. We consider d1(Ω) and d2(Ω)

because if the state is {(ūY , vY ), (uY , v̄Y )}, {(ūY , vY )}, or {(uY , v̄Y )} the next state

is ∅ by the definition of the subroutine. Let Ω′ and Ω′′ be successive states in the

algorithm. It is clear from the definition that d1(Ω′) > d1(Ω′′) and d2(Ω′) > d2(Ω′′).

Since M is a finite set, d1(.) and d2(.) takes only a finite number of values. Thus

after a finite number of steps the algorithm stops, i.e., Ω = ∅.
Ê ⊆ S(Γ). Let (u, v) ∈ Ê . This implies (u, v) = T (u, v) and (u, v) ∈ B

by the definition of the algorithm and hence (u, v) ∈ EB(T ). By Proposition 1,

EB(T ) = S(Γ). Therefore (u, v) ∈ S(Γ) which proves Ê ⊆ S(Γ).

S(Γ) ⊆ Ê . Let (u, v) ∈ S(Γ) = EB(T ). Suppose, by way of contradiction, that

(u, v) 6∈ Ê . This implies τ = (uk, vk) 6= (u, v) and (u, v) 6∈M so that the algorithm’s

states do not contain (u, v). Then either τ �F (u, v) or τ �F (u, v). Suppose,

without loss of generality, τ �F (u, v) and maxf∈F (ukf−uf ) = t. By Lemma 1, there

is w ∈ W such that vw− vkw = t. Now we show that {(ūY ∧u+ enf , 0∨ v− eng )} 6∈M
for all 1 ≤ f, g ≤ n. Suppose this is not the case. Then there is a state Ωc of the

algorithm and a, b ∈ [1, n] such that (ūY ∧ u + ena , 0 ∨ v − enb ) ∈ Ωc ⊆ M . This is

only possible if (u, v) is in the previous state Ωc−1 ⊆ M by the definition of the
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subroutine; a contradiction since we assumed that (u, v) 6∈ M . Using the same

argument, we can also conclude that {(ūY ∧ u + enf + enh, 0 ∨ v − eng − enk)} 6∈ M

for all 1 ≤ h, k ≤ n. Repeating the same argument t− 1 times implies (ūY ∧ uk −
enl , 0 ∨ vk + eng ) 6∈ M , which is a contradiction since we have shown that there is

τ = (uk, vk) ∈ Ê and (ūY ∧uk−enl , 0∨vk +eng ) ∈ Ω0 ⊆M . This implies (u, v) ∈M ,

and hence (u, v) ∈ Ê . The case where τ �F (u, v) is also similar.

Now we use the following Example to show the details of the algorithm.

Example 1 [Shapley-Shubik (1972)]. Let Γ = 〈{f1, f2, f3}, {w1, w2, w3}, α〉 be an

assignment game where α is

w1 w2 w3

f1 5 8 2

f2 7 9 6

f3 2 3 0

.

Algorithm 2 starts at

(u0, v0) = (8, 9, 3, 0, 0, 0)

and does T (8, 9, 3, 0, 0, 0) = (8, 7, 0, 0, 0, 0), T (8, 7, 0, 0, 0, 0) = (8, 7, 0, 2, 2, 0), T (8, 7, 0, 2, 2, 0) =

(6, 6, 0, 2, 2, 0), T (6, 6, 0, 2, 2, 0) = (5, 6, 0, 2, 3, 0), T (5, 6, 0, 2, 3, 0) = (5, 6, 0, 2, 3, 0).

This implies τ = (5, 6, 0, 2, 3, 0). Now

Ω0 = {(6, 6, 0, 1, 3, 0), (6, 6, 0, 2, 2, 0), (6, 6, 0, 2, 3, 0), (5, 7, 0, 1, 3, 0), (5, 7, 0, 2, 2, 0), (5, 7, 0, 2, 3, 0),

(5, 6, 1, 1, 3, 0), (5, 6, 1, 2, 2, 0), (5, 6, 1, 2, 3, 0), (4, 6, 0, 3, 3, 0), (4, 6, 0, 2, 4, 0), (4, 6, 0, 2, 3, 1), (5, 5, 0, 3, 3, 0),

(5, 5, 0, 2, 4, 0), (5, 5, 0, 2, 3, 1), (5, 6, 0, 3, 3, 0), (5, 6, 0, 2, 4, 0), (5, 6, 0, 2, 3, 1)}

Note that for all (u, v) ∈ {(5, 6, 1, 1, 3, 0), (4, 6, 0, 2, 4, 0)} ⊂ Ω0, T (u, v) = (u, v).

Then add {(5, 6, 1, 1, 3, 0), (4, 6, 0, 2, 4, 0)} to Ê . The new state is

Ω = {(5, 6, 1, 1, 3, 0) + (e3l ,−e3m), (5, 6, 1, 1, 3, 0) + (−e3l ,+e3m),

(4, 6, 0, 2, 4, 0) + (e3l ,−e3m), (4, 6, 0, 2, 4, 0) + (−e3l , e3m)} \ {(5, 6, 0, 2, 3, 0)}.

For all (u, v) ∈ {(4, 6, 1, 1, 4, 0), (4, 5, 0, 2, 4, 1), (3, 6, 0, 2, 5, 0)} ⊂ Ω, T (u, v) =

(u, v). Then add {(4, 6, 1, 1, 4, 0), (4, 5, 0, 2, 4, 1), (3, 6, 0, 2, 5, 0)} to Ê . The new

state is

Ω′ = {(4, 6, 1, 1, 4, 0) + (e3l ,−e3m), (4, 6, 1, 1, 4, 0) + (−e3l ,+e3m), (4, 5, 0, 2, 4, 1) + (e3l ,−e3m),

(4, 5, 0, 2, 4, 1) + (−e3l ,+e3m), (3, 6, 0, 2, 5, 0) + (e3l ,−e3m), (3, 6, 0, 2, 5, 0) + (−e3l ,+e3m)} \ Ê .
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It is only the case that for (3, 5, 0, 2, 5, 1) ∈ Ω′, T (3, 5, 0, 2, 5, 1) = (3, 5, 0, 2, 5, 1).

Then add (3, 5, 0, 2, 5, 1) to Ê . The new state is

Ω′′ = {(3, 5, 0, 2, 5, 1) + (e3l ,−e3m), (3, 5, 0, 2, 5, 1) + (−e3l ,+e3m)} \ Ê .

Note that there is not any (u, v) ∈ Ω′′ such that T (u, v) = (u, v). Then the new

state is ∅. This implies the algorithm stops and the core of the assignment game is

Ê = {(5, 6, 0, 2, 3, 0), (5, 6, 1, 1, 3, 0), (4, 6, 0, 2, 4, 0), (4, 6, 1, 1, 4, 0), (4, 5, 0, 2, 4, 1),

(3, 6, 0, 2, 5, 0), (3, 5, 0, 2, 5, 1)}.

5 Formulation with core outcomes

It would be nice to find a construction such that fixed points will directly provide

the core outcomes. However unlike the assignment literature without money, it is

not possible to work with core outcomes in this setup. In the rest of the paper, we

define a reasonable construction which can work with outcomes. Then, we provide

examples to show that this type of formulation is not possible.

Let π be a pre-assignment if π : F ∪W → F ∪W such that π(f) ∈ W ∪{f} for

all f ∈ F , and π(w) ∈ F ∪{w} for all w ∈ W . Let Π be the set of all pre-assignment

vectors. Define a map T ′ : Y × Π→ Y × Π such that

T ′f ((u, v);π(f)) = ((maxUf (u, v)) ∨ 0;w) where w ∈ argmax (αfw − vw) ∀f ∈ F,

and

T ′w((u, v);π(w)) = ((maxVw(u, v); f)) ∨ 0 where f ∈ argmax (αfw − uf ) ∀w ∈ W.

Then we could show that the fixed points of T ′ is equivalent to the core. How-

ever, this type of formulation is not possible in this framework since there might be

more than one optimal assignment and different (pre)assignments might correspond

to same payoffs. Then, fixed point of T ′ may fail to induce an assignment. On the

other hand, by using our formulation core payoffs can always be found and core

outcomes will be equal to the Cartesian product of the fixed points and the set of

optimal assignments which is constructed.
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Example 2 (Shapley-Shubik (1972)) Let Γ = 〈{f1, f2, f3}, {w1, w2, w3}, α〉 be

an assignment game where α is

w1 w2 w3

f1 0 2 0

f2 2 0 2

f3 0 2 0

There are four optimal assignments given by

X = {(0, 1, 0; 1, 0, 0; 0, 0, 1), (0, 1, 0; 0, 0, 1; 1, 0, 0), (0, 0, 1; 1, 0, 0; 0, 1, 0), (1, 0, 0; 0, 0, 1; 0, 1, 0)}.

with value
∑

(f,w)∈F×W αfwxfw = 4. The core of the game given by

C(Γ) = (0, 2, 0, 0, 2, 0)×X .

Moreover, ((0, 2, 0, 0, 2, 0); π) where π(f1) = w1, π(f2) = w3, π(f3) = w2, π(w1) =

f3, π(w2) = f1, π(w3) = f3 is a fixed point of T ′ with appropriate tie breaking rule

but π is not an assignment. Hence ((0, 2, 0, 0, 2, 0); π) 6∈ C(Γ).

Using Example 1, we can show that a construction like T ′ will not work even

though there is a unique optimal assignment. In the example, there exists a unique

optimal assignment given by

X = {(0, 1, 0; 0, 0, 1; 1, 0, 0)}

with value
∑

(f,w)∈F×W αfwxfw = 16. It is easy to see that (3, 5, 0, 2, 5, 1) ∈ S(Γ′).

Moreover, ((3, 5, 0, 2, 5, 1); π) where π(f1) = w1, π(f2) = w3, π(f3) = w2, π(w1) =

f3, π(w2) = f1, π(w3) = f2 is a fixed point of T ′ with appropriate tie breaking rule

but π is not an assignment. Hence ((3, 5, 0, 2, 5, 1); π) 6∈ C(Γ′).

6 Final remarks

In our formulation, we work with payoffs and construct optimal assignments rather

than directly working with outcomes. The main reason for that is different (pre)

assignments might lead to a same payoff structure and the mapping defined on

feasible outcomes may fail to induce an assignment. Moreover, defining a partial

order on the Cartesian product of the payoffs and (pre)assignments is a problem.

12



Such a formulation (if it is not impossible) which works also with outcomes, seems

to be an important follow-up to our work. The extension of our algorithm to

many-to-one and many-to-many assignment games will be a subject of our future

work.
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