PHYS-505: ELECTROMAGNETIC THEORY III HOMEWORK III

Due 10.05.2014

Q1: Find
a) the electric dipole moment of a thin ring lying in the $x-y$ plane centered on the origin bearing line charge $\rho=\lambda \delta(r-a) \delta(z) \cos \phi$.
b) the electric dipole moment of a thin charged rod bearing charge density $\rho=\lambda z \delta(x) \delta(y)$ for $z \in(-a, a)$.
c) the quadrupole moment of a square whose edges, taken in turn, have alternating charges $\pm q$ uniformly distributed over each as illustrated in Figure 1.
d) the quadrupole moment of a rod of length L bearing charge density $\rho=\eta\left(z^{2}-\frac{L^{2}}{12}\right)$, with z measured from the midpoint of the rod.

Q2: Three point charges with charges $-q_{0},-q_{0}$ and $2 q_{0}$ are held on $x y$-plane at positions $(a, 0,0),(-a, 0,0)$ and $(0,0,0)$, respectively.
a) Find the electric potential on the z axis.
b) Using the electric potential, find the electric field on the z axis. What is your result for $z \gg a$?
c) What is the electric potential energy of this configuration?
d) Find the electric potential everywhere using multipole moments.

Q3: Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges $\pm Q$. The empty space between the spheres is half-filled by a hemi-hemispherical shell of dielectric (of dielectric constant $\frac{\epsilon}{\epsilon_{0}}$), as shown in the figure 2 .
a) Find the electric field everywhere between the spheres.
b) Calculate the surface-charge distribution on the inner sphere.
c) Calculate the polarization-charge density induced on the surface of the dielectric at $r=a$.

Q4: A very long, right circular, cylindrical shell of dielectric constant $\frac{\epsilon}{\epsilon_{0}}$ and inner and outer radii a and b, respectively, is placed in a previously uniform electric field E_{0} with its axis perpendicular to the field. The medium inside and outside the cylinder has a dielectric constant of unity. Determine the potential and electric field in the three regions, neglecting end effects.

Figure 1:

Figure 2:

