METU, Spring 2018, Math 523.
 Homework 6 (due May 16)

1. (20 points) Let $K=\mathbf{Q}(\sqrt{30})$. Recall that we have shown that \mathcal{O}_{K} is not a unique factorization domain. Find the structure of $\mathrm{Cl}(K)$.
2. (30 points) There are 9 imaginary quadratic fields $K=\mathbf{Q}(\sqrt{m})$ with class number one (this is a well known fact due to Baker, Heegner and Stark). The set of squarefree integers m giving such fields is

$$
M=\{-1,-2,-3,-7,-11,-19,-43,-67,-163\} .
$$

- Verify that the imaginary quadratic field $K=\mathbf{Q}(\sqrt{m})$ has class number one, for each integer $m \in M$.
- (Exercise 5.10. Marcus) Let $-2000<m<0$ be a squarefree negative integer such that $K=\mathbf{Q}(\sqrt{m})$ has class number one. Show that $m \in M$.

3. (20 points) Show that the following Diophantine equation has infinitely many solutions:

$$
a^{3}+2 b^{3}+4 c^{3}=6 a b c+1 .
$$

Give a procedure to obtain each solution. (Hint: Consider $K=\mathbf{Q}(\sqrt[3]{2})$.)
4. (30 points) (The simplest cubic fields) Let a be an integer such that $p=a^{2}+3 a+9$ is a prime number. Set $f(x)=x^{3}-a x^{2}-(a+3) x-1$. Let ρ be a root of f and $K=\mathbf{Q}(\rho)$. (You can fix $a=1$ for simplicity.)
(a) Show that f is irreducible and compute d_{K}.
(b) Is the extension K / \mathbf{Q} normal? How many real embeddings are there?
(c) Prove that $u=\rho$ and $v=\rho+1$ are units in \mathcal{O}_{K}.
(d) Find generators for the unit group \mathcal{O}_{K}^{\times}.

