METU, Spring 2018, Math 523. Homework 6 (due May 16)

- 1. (20 points) Let $K = \mathbf{Q}(\sqrt{30})$. Recall that we have shown that \mathcal{O}_K is not a unique factorization domain. Find the structure of $\operatorname{Cl}(K)$.
- 2. (30 points) There are 9 imaginary quadratic fields $K = \mathbf{Q}(\sqrt{m})$ with class number one (this is a well known fact due to Baker, Heegner and Stark). The set of squarefree integers m giving such fields is

$$M = \{-1, -2, -3, -7, -11, -19, -43, -67, -163\}.$$

- Verify that the imaginary quadratic field $K = \mathbf{Q}(\sqrt{m})$ has class number one, for each integer $m \in M$.
- (*Exercise 5.10. Marcus*) Let -2000 < m < 0 be a squarefree negative integer such that $K = \mathbf{Q}(\sqrt{m})$ has class number one. Show that $m \in M$.
- 3. (20 points) Show that the following Diophantine equation has infinitely many solutions:

$$a^3 + 2b^3 + 4c^3 = 6abc + 1.$$

Give a procedure to obtain each solution. (Hint: Consider $K = \mathbf{Q}(\sqrt[3]{2})$.)

- 4. (30 points) (*The simplest cubic fields*) Let a be an integer such that $p = a^2 + 3a + 9$ is a prime number. Set $f(x) = x^3 ax^2 (a+3)x 1$. Let ρ be a root of f and $K = \mathbf{Q}(\rho)$. (You can fix a = 1 for simplicity.)
 - (a) Show that f is irreducible and compute d_K .
 - (b) Is the extension K/\mathbf{Q} normal? How many real embeddings are there?
 - (c) Prove that $u = \rho$ and $v = \rho + 1$ are units in \mathcal{O}_K .
 - (d) Find generators for the unit group \mathcal{O}_K^{\times} .