METU, Spring 2018, Math 523.

Homework 4 (due April 18)

1. Let K be a number field of degree n over \mathbf{Q}. Show that every non-zero ideal $\mathfrak{a} \subset \mathcal{O}_{K}$ is a free abelian group of rank n.
2. Consider the ideal $I=\langle x, 6\rangle$ of the ring $R=\mathbf{Z}[x]$. Show that there are infinitely many prime ideals of R that is contained in I. Is it possible to represent I as a product of prime ideals? Is R integrally closed in its field of fractions? Is R Noetherian? Is R a Dedekind domain?
3. Suppose that $K=\mathbf{Q}(\sqrt{-23})$. Consider the ideal $\mathfrak{a}=\langle 3,1+\sqrt{-23}\rangle$ of \mathcal{O}_{K}. Show that $\mathfrak{a} \neq\langle 1\rangle$. Show that $N(\mathfrak{a})=3$. Is \mathfrak{a} principal? What about \mathfrak{a}^{2} and \mathfrak{a}^{3} ?
4. Set $\alpha=\sqrt[3]{19}$ and consider the number field $K=\mathbf{Q}(\sqrt[3]{19})$. Recall that $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right] \neq 1$. Find the ideal prime decomposition of $\langle p\rangle \subset \mathcal{O}_{K}$ for $p \in\{2,3,5,7\}$.
5. Show that the polynomial $x^{4}+1$ is reducible in $\mathbf{F}_{p}[x]$ for each prime $p \in \mathbf{Z}$.
