METU, Spring 2018, Math 523. Homework 3 (due March 28)

1. Show that every quadratic number field K is contained in a cyclotomic field $\mathbf{Q}\left(\zeta_{n}\right)$ for some positive integer n. Recall that we have shown $K=\mathbf{Q}(\sqrt{m})$ for some squarefree integer m. What is the relation between m and n, if n is assumed to be the minimal such integer? (Hint: See Marcus Chap. 2, Ex. 8).
2. Let K be the m-th cyclotomic field $\mathbf{Q}\left(\zeta_{m}\right)$. Recall that $\mathcal{O}_{K}=\mathbf{Z}\left[\zeta_{m}\right]$.
(a) Let m be a power of a prime p. If $\operatorname{gcd}(p, a b)=1$, then show that $\left(1-\zeta_{m}^{a}\right) /\left(1-\zeta_{m}^{b}\right)$ is a unit in \mathcal{O}_{K}.
(b) Let $m=p q$ where p and q are distinct primes. Show that $1-\zeta_{m}$ is a unit in \mathcal{O}_{K}.
3. Show that the Diophantine equation $x^{2}-6 y^{2}=523$ has infinitely many solutions.
4. Show that $\mathbf{Z}[\sqrt{-30}]$ and $\mathbf{Z}[\sqrt{30}]$ are not unique factorization domains.
5. Show that the only solution of the Diophantine equation $x^{3}=y^{2}+1$ is $(0,1)$.
