METU, Spring 2018, Math 523.

Homework 2 (due March 14)

1. (10pt) Show that $\mathbf{Q}(\sqrt{2}, i)=\mathbf{Q}\left(\zeta_{8}\right)$ where $\zeta_{8}=\exp (2 \pi i / 8)$. Find all embeddings (monomorphisms) from $\mathbf{Q}(\sqrt{2}, i)$ to \mathbf{C}. Express each such embedding in the form $\sigma_{i}\left(\zeta_{8}\right)=\zeta_{8}^{i}$ for some $i \in\{1,2, \ldots, 8\}$.
2. (10pt) Find a 6×6 matrix M with coefficients from \mathbf{Z} such that the minimal polynomial of $\alpha=\sqrt[3]{3}+\sqrt{2}$ over \mathbf{Q} is given by the determinant of $x I-M$. Find the minimal polynomial of α over \mathbf{Q}. Is α a unit in the ring $\mathbf{Z}[\alpha]$?
3. (10pt) Show that the additive group of the ring $\mathbf{Z}[\sqrt{5} / 2]$ is not finitely generated.
4. (10pt) Show that $f(x)=x^{3}+5 x+3$ is irreducible. Let α be a root of $f(x)$ and let $K=\mathbf{Q}(\alpha)$.

- Calculate $T_{\mathbf{Q}}^{K}\left(\alpha^{i}\right)$ for $i \in\{0,1,2,3\}$.
- Calculate $N_{\mathbf{Q}}^{K}(\alpha-j)$ for $j \in\{0,1,2\}$.

5. (20pt) Suppose that $K=\mathbf{Q}(\sqrt{2}, \sqrt{3})$. Show that $\mathcal{O}_{K} \neq \mathbf{Z}[\sqrt{2}, \sqrt{3}]$.
6. (20pt) Suppose that $K=\mathbf{Q}(\sqrt[3]{19})$. Find an integral basis.
7. (20pt) Suppose that α is a complex number such that $\alpha^{5}=\alpha+1$. If $K=\mathbf{Q}(\alpha)$ then show that $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$.
