METU, Spring 2018, Math 523. Homework 2 (due March 14)

- 1. (10pt) Show that $\mathbf{Q}(\sqrt{2}, i) = \mathbf{Q}(\zeta_8)$ where $\zeta_8 = \exp(2\pi i/8)$. Find all embeddings (monomorphisms) from $\mathbf{Q}(\sqrt{2}, i)$ to **C**. Express each such embedding in the form $\sigma_i(\zeta_8) = \zeta_8^i$ for some $i \in \{1, 2, ..., 8\}$.
- 2. (10pt) Find a 6×6 matrix M with coefficients from \mathbf{Z} such that the minimal polynomial of $\alpha = \sqrt[3]{3} + \sqrt{2}$ over \mathbf{Q} is given by the determinant of xI M. Find the minimal polynomial of α over \mathbf{Q} . Is α a unit in the ring $\mathbf{Z}[\alpha]$?
- 3. (10pt) Show that the additive group of the ring $\mathbb{Z}[\sqrt{5}/2]$ is not finitely generated.
- 4. (10pt) Show that $f(x) = x^3 + 5x + 3$ is irreducible. Let α be a root of f(x) and let $K = \mathbf{Q}(\alpha)$.
 - Calculate $T_{\mathbf{Q}}^{K}(\alpha^{i})$ for $i \in \{0, 1, 2, 3\}$.
 - Calculate $N_{\mathbf{Q}}^{K}(\alpha j)$ for $j \in \{0, 1, 2\}$.
- 5. (20pt) Suppose that $K = \mathbf{Q}(\sqrt{2}, \sqrt{3})$. Show that $\mathcal{O}_K \neq \mathbf{Z}[\sqrt{2}, \sqrt{3}]$.
- 6. (20pt) Suppose that $K = \mathbf{Q}(\sqrt[3]{19})$. Find an integral basis.
- 7. (20pt) Suppose that α is a complex number such that $\alpha^5 = \alpha + 1$. If $K = \mathbf{Q}(\alpha)$ then show that $\mathcal{O}_K = \mathbf{Z}[\alpha]$.