METU, Spring 2018, Math 523. Homework 1 (due February 28)

- 1. Show that $\{\pm 1, \pm i\}$ are all the units in the ring of Gaussian integers $\mathbf{Z}[i]$.
- 2. Show that the ring $\mathbf{Z}[\sqrt{2}]$ has infinitely many units.
- 3. Show that Euclidean algorithm does not work in the integral domain $\mathbb{Z}[\sqrt{-6}]$ under the norm map $N(a + b\sqrt{-6}) = a^2 + 6b^2$. Do not use the fact ED \Rightarrow PID \Rightarrow UFD.
- 4. Determine all solutions of the following Diophantine equations:
 - $x^2 + 2y^2 = 3z^2$.
 - $3x^2 + 4y^2 = 5z^2$.
- 5. Let R be a principal ideal domain and let A be a nonzero ideal of R. Show that A is prime if and only if A is maximal.
- 6. Construct a field $\mathbf{F}_{16} \cong R/\mathfrak{m}$ with 16 elements by choosing a ring R and a maximal ideal $\mathfrak{m} \subset R$ suitably.
 - Determine an element $r \in R$ such that the corresponding element in \mathbf{F}_{16} generates the multiplicative group \mathbf{F}_{16}^{\times} . Construct a subfield \mathbf{F}_4 of \mathbf{F}_{16} with 4 elements.
 - What is $[\mathbf{F}_{16} : \mathbf{F}_4]$? Is there a nontrivial automorphism of \mathbf{F}_{16} fixing the subfield \mathbf{F}_4 pointwise?
- 7. Let K be a field extension of **Q** such that $[K : \mathbf{Q}] = 2$. Show that $K = \mathbf{Q}[\sqrt{m}]$ for some integer $m \in \mathbf{Z}$. Give an example of a field extension L/\mathbf{Q} such that $[L : \mathbf{Q}] = 3$ and $L \not\cong \mathbf{Q}[\sqrt[3]{m}]$ as rings for any integer $m \in \mathbf{Z}$.
- 8. Let $R = \mathbb{Z}[\sqrt{-3}]$ and let $I = \langle 2, 1 + \sqrt{-3} \rangle$. Show that $I \neq \langle 2 \rangle$ but $I^2 = 2I$. Conclude that ideals in R do not factor uniquely into prime ideals.