METU, Spring 2018, Math 523.

Exercise Set 10

1. Let $\mathfrak{P} \subset L$ be a prime lying over $\mathfrak{p} \subset K$. Suppose that L / K is a normal extension with Galois group $G=\operatorname{Gal}(L / K)$. Show that

- the decomposition group $D(\mathfrak{P} \mid \mathfrak{p})$ is a subgroup of G.
- the inertia group $I(\mathfrak{P} \mid \mathfrak{p})$ is a normal subgroup of $D(\mathfrak{P} \mid \mathfrak{p})$.

2. Let $K=\mathbf{Q}\left(\zeta_{m}\right)$, the m-th cyclotomic field. Fix a prime $p \in \mathbf{Z}$. Write $m=p^{k} n$ for some integer n with $p \nmid n$. Let $\mathfrak{p} \subset \mathcal{O}_{K}$ be a prime ideal lying over p. Set $e=e(\mathfrak{p} \mid p)$ and $f=f(\mathfrak{p} \mid p)$. Prove that $\phi(m)=r \cdot e \cdot f$ with $e=\phi\left(p^{k}\right)$ and f is the multiplicative order of $p \bmod n$.
3. If $K=\mathbf{Q}\left(\zeta_{m}\right)$, then find the ideal prime decomposition of $p \mathcal{O}_{K}$ for $p \in\{2,3,5,7\}$ and $m \in\{8,12,14,15\}$.
4. If K is a number field in which no prime $p \in \mathbf{Z}$ ramifies, then prove that $K=\mathbf{Q}$.
5. Find a quadratic extension L of $K=\mathbf{Q}(\sqrt{-5})$ such that no prime ramifies in the extension L / K.
6. Let K be a number field. Prove that infinitely many primes $p \in \mathbf{Z}$ split completely in K, i.e. split into $[K: \mathbf{Q}]$ distinct factors.
