METU, Spring 2018, Math 523.
 Exercise Set 9

1. Set $\alpha=\sqrt[3]{5^{2} \cdot 7}$ and consider $L=\mathbf{Q}(\alpha)$. (Recall that \mathcal{O}_{L} has no power basis! In other words there isn't any element $\theta \in \mathcal{O}_{L}$ such that $\mathcal{O}_{L}=\mathbf{Z}[\theta]$.)

- Show that $\left[\mathcal{O}_{L}: \mathbb{Z}[\alpha]\right]=5$ and $\left[\mathcal{O}_{L}: \mathbb{Z}\left[\alpha^{2} / 5\right]\right]=7$.
- Find the ideal prime decomposition of $p \mathcal{O}_{L}$ for $p \in\{2,3,5,7\}$.

2. Set $\zeta=\exp (2 \pi i / 23)$. Consider $L=\mathbf{Q}(\zeta)$ and $K=(\sqrt{-23})$. Recall that $K \subset L$ and $\mathcal{O}_{K}=\mathbf{Z}[\theta]$ with $\theta=(1+\sqrt{-23}) / 2$. Take $\mathfrak{p}=\langle 2, \theta\rangle \subset \mathcal{O}_{K}$. Let $\mathfrak{P} \subset \mathcal{O}_{L}$ be a prime ideal lying over \mathfrak{p}.

- Show that $f(\mathfrak{P} \mid \mathfrak{p})=11$. Conclude that $\mathfrak{P}=\langle 2, \theta\rangle \subset \mathcal{O}_{L}$.
- Show that \mathfrak{p} is not principal in \mathcal{O}_{K} whereas $\mathfrak{p}^{3}=(\theta-2)$.
- Show that \mathfrak{P} is not principal.
- Show that if 2 is irreducible in the ring $\mathbf{Z}[\zeta]$.
- Verify that the product

$$
\left(1+\zeta^{2}+\zeta^{4}+\zeta^{5}+\zeta^{6}+\zeta^{10}+\zeta^{11}\right) \cdot\left(1+\zeta+\zeta^{5}+\zeta^{6}+\zeta^{7}+\zeta^{9}+\zeta^{11}\right)
$$

is divisible by 2 in the $\operatorname{ring} \mathbf{Z}[\zeta]$.

- Show that $\mathbf{Z}[\zeta]$ is not a UFD.

3. Let $L=\mathbf{Q}(\sqrt{2}, \sqrt{3})$. You are given that $\mathcal{O}_{L}=\mathbf{Z}[\alpha]$ where $\alpha=(\sqrt{2}+\sqrt{6}) / 2$.

- Show that L / \mathbf{Q} is normal and $\operatorname{Gal}(L / \mathbf{Q}) \cong \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.
- Prove that the fields $K_{1}=\mathbf{Q}(\sqrt{2}), K_{2}=\mathbf{Q}(\sqrt{3})$ and $K_{3}=\mathbf{Q}(\sqrt{6})$ are all proper subfields of L.
- Find a prime ideal $\mathfrak{P} \subset \mathcal{O}_{L}$ lying over p (by giving generators) for each prime $p \in\{2,3,5\}$. What is the inertia index $e(\mathfrak{P} \mid p \mathbf{Z})$ and residual degree $f(\mathfrak{P} \mid p \mathbf{Z})$?
- Determine $\mathfrak{p}_{i}=\mathfrak{P} \cap K_{i}$ for each $i \in\{1,2,3\}$. (There are 9 cases in total.)
- Let β be an element in \mathcal{O}_{L} such that $L=\mathbf{Q}(\beta)$. Suppose that $f(x)=\min (\beta, \mathbf{Q})$. Does there exist a prime p such that the reduction of $f(x)$ modulo p is irreducible in $(\mathbf{Z} / p \mathbf{Z})[x]$?

