METU, Spring 2018, Math 523.
 Exercise Set 8

1. Let K be a number field and let $\mathfrak{a} \subset \mathcal{O}_{K}$ be an ideal. If α is a nonzero element of \mathfrak{a}, then show that $N(\mathfrak{a})$ divides $N_{\mathbf{Q}}^{K}(\alpha)$.
2. Let $\alpha=\sqrt{-5}$ and $K=\mathbf{Q}(\alpha)$. Suppose that $\mathfrak{a}=(120,11 \alpha-19) \subset \mathcal{O}_{K}$.

- Find all primes $p \in \mathbf{Z}$ such that $(\mathfrak{a} \cap \mathbf{Z}) \subset p \mathbf{Z}$.
- Evaluate $N_{\mathbf{Q}}^{K}(11 \alpha-19)$. Is this integer related with $N(\mathfrak{a})$?
- Find the ideal prime decomposition of \mathfrak{a}.

3. Consider the ideals $\mathfrak{a}=(2+\sqrt{-5})$ and $\mathfrak{b}=(3)$ in $\mathbf{Z}[\sqrt{-5}]$. Show that $\mathfrak{a}+\mathfrak{b}=(3,1-\sqrt{5})$ and $\mathfrak{a} \cap \mathfrak{b}=(9,3-3 \sqrt{-5})$.
4. Consider the number fields $\mathbf{Q}, \mathbf{Q}(i), \mathbf{Q}(\sqrt{2}), \mathbf{Q}(\sqrt{-29}), \mathbf{Q}(\sqrt[3]{2}), \mathbf{Q}\left(\zeta_{5}\right)$. For each one of these number fields,

- find all the ideals that contain the element 30 ,
- find all the ideals with norm 18, if there is any.

5. Set $\alpha=\sqrt[3]{19}$ and consider the number field $K=\mathbf{Q}(\sqrt[3]{19})$. Recall that $\left[\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right] \neq 1$. Find the ideal prime decomposition of $(p) \subset \mathcal{O}_{K}$ for $p \in\{2,3,5,7\}$.
6. Show that the polynomial $x^{4}+1$ is reducible in $\mathbf{F}_{p}[x]$ for each prime $p \in \mathbf{Z}$.
7. Let $\mathfrak{p} \subset \mathfrak{q} \subset \mathfrak{r}$ be prime ideals of number fields $K \subset L \subset M$ respectively. Show that the ramification index and inertial degree are multiplicative in towers.

- $e(\mathfrak{r} \mid \mathfrak{p})=e(\mathfrak{r} \mid \mathfrak{q}) e(\mathfrak{q} \mid \mathfrak{p})$.
- $f(\mathfrak{r} \mid \mathfrak{p})=f(\mathfrak{r} \mid \mathfrak{q}) f(\mathfrak{q} \mid \mathfrak{p})$.

8. Let α be a root of $f(x)=x^{3}-x-1$ and let $K=\mathbf{Q}(\alpha)$.

- Show that f is irreducible over \mathbf{Q}. Find an integral basis for \mathcal{O}_{K} and compute the discriminant d_{K}.
- Consider the ideals $\mathfrak{p}=(23, \alpha-10)$ and $\mathfrak{q}=(23, \alpha-3)$ of \mathcal{O}_{K}. Show that \mathfrak{p} and \mathfrak{q} are distinct prime ideals.
- Verify that $(23)=\mathfrak{p}^{2} \mathfrak{q}$. Determine the ramification index and inertial degree for each prime.

9. Let p be an odd prime and let $K=\mathbf{Q}\left(\zeta_{p}\right)$ be the p-th cyclotomic field.

- Show that $\mathcal{O}_{K}=\mathbf{Z}\left[\zeta_{p}\right]$.
- Consider the principal ideal $\mathfrak{p}=\left(1-\zeta_{p}\right) \subset \mathcal{O}_{K}$ and compute $N(\mathfrak{p})$. Is \mathfrak{p} prime?
- Find the ideal prime decomposition of $(p) \subset \mathcal{O}_{K}$.

