METU, Spring 2018, Math 523. Exercise Set 8

- 1. Let K be a number field and let $\mathfrak{a} \subset \mathcal{O}_K$ be an ideal. If α is a nonzero element of \mathfrak{a} , then show that $N(\mathfrak{a})$ divides $N_{\mathbf{Q}}^K(\alpha)$.
- 2. Let $\alpha = \sqrt{-5}$ and $K = \mathbf{Q}(\alpha)$. Suppose that $\mathfrak{a} = (120, 11\alpha 19) \subset \mathcal{O}_K$.
 - Find all primes $p \in \mathbf{Z}$ such that $(\mathfrak{a} \cap \mathbf{Z}) \subset p\mathbf{Z}$.
 - Evaluate $N_{\mathbf{Q}}^{K}(11\alpha 19)$. Is this integer related with $N(\mathfrak{a})$?
 - Find the ideal prime decomposition of \mathfrak{a} .
- 3. Consider the ideals $\mathfrak{a} = (2+\sqrt{-5})$ and $\mathfrak{b} = (3)$ in $\mathbb{Z}[\sqrt{-5}]$. Show that $\mathfrak{a} + \mathfrak{b} = (3, 1-\sqrt{5})$ and $\mathfrak{a} \cap \mathfrak{b} = (9, 3-3\sqrt{-5})$.
- 4. Consider the number fields $\mathbf{Q}, \mathbf{Q}(i), \mathbf{Q}(\sqrt{2}), \mathbf{Q}(\sqrt{-29}), \mathbf{Q}(\sqrt[3]{2}), \mathbf{Q}(\zeta_5)$. For each one of these number fields,
 - find all the ideals that contain the element 30,
 - find all the ideals with norm 18, if there is any.
- 5. Set $\alpha = \sqrt[3]{19}$ and consider the number field $K = \mathbf{Q}(\sqrt[3]{19})$. Recall that $[\mathcal{O}_K : \mathbf{Z}[\alpha]] \neq 1$. Find the ideal prime decomposition of $(p) \subset \mathcal{O}_K$ for $p \in \{2, 3, 5, 7\}$.
- 6. Show that the polynomial $x^4 + 1$ is reducible in $\mathbf{F}_p[x]$ for each prime $p \in \mathbf{Z}$.
- 7. Let $\mathfrak{p} \subset \mathfrak{q} \subset \mathfrak{r}$ be prime ideals of number fields $K \subset L \subset M$ respectively. Show that the ramification index and inertial degree are multiplicative in towers.
 - $e(\mathbf{r}|\mathbf{p}) = e(\mathbf{r}|\mathbf{q})e(\mathbf{q}|\mathbf{p}).$
 - $f(\mathbf{r}|\mathbf{p}) = f(\mathbf{r}|\mathbf{q})f(\mathbf{q}|\mathbf{p}).$
- 8. Let α be a root of $f(x) = x^3 x 1$ and let $K = \mathbf{Q}(\alpha)$.
 - Show that f is irreducible over \mathbf{Q} . Find an integral basis for \mathcal{O}_K and compute the discriminant d_K .
 - Consider the ideals $\mathfrak{p} = (23, \alpha 10)$ and $\mathfrak{q} = (23, \alpha 3)$ of \mathcal{O}_K . Show that \mathfrak{p} and \mathfrak{q} are distinct prime ideals.
 - Verify that (23) = p²q. Determine the ramification index and inertial degree for each prime.
- 9. Let p be an odd prime and let $K = \mathbf{Q}(\zeta_p)$ be the p-th cyclotomic field.
 - Show that $\mathcal{O}_K = \mathbf{Z}[\zeta_p].$
 - Consider the principal ideal $\mathfrak{p} = (1 \zeta_p) \subset \mathcal{O}_K$ and compute $N(\mathfrak{p})$. Is \mathfrak{p} prime?
 - Find the ideal prime decomposition of $(p) \subset \mathcal{O}_K$.