METU, Spring 2018, Math 523.
 Exercise Set 7

1. Let \mathfrak{p} be a proper ideal of a commutative ring R with identity 1_{R}. Show that the following are equivalent:

- For all elements $a, b \in R, a b \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
- For all ideals $\mathfrak{a}, \mathfrak{b}$ in $R, \mathfrak{a b} \subseteq \mathfrak{p}$ implies $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$.

2. Let R be an integral domain. For nonzero ideals $I, J \subset R$, define the relation

$$
I \sim J \Longleftrightarrow \alpha I=\beta J \text { for some nonzero } \alpha, \beta \in R .
$$

- Prove that \sim is an equivalence relation.
- Describe the corresponding equivalence class if I is principal.
- Given an ideal I, suppose that there is an ideal J such that $I J$ is principal. Does this property make the set of ideal classes a group?

3. Let R be an integral domain. Prove that the followings are equivalent.

- Every ideal is finitely generated.
- Every ascending chain of ideals stabilizes (Ascending Chain Condition).
- Every non-empty set \mathcal{S} of ideals has a maximal member.

4. Let K be a number field of degree n over \mathbf{Q}. Show that every non-zero ideal $\mathfrak{a} \subset \mathcal{O}_{K}$ is a free abelian group of rank n.
5. Consider the ideal $I=\langle x, 6\rangle$ of the ring $R=\mathbf{Z}[x]$. Show that there are infinitely many prime ideals of R that is contained in I. Is it possible to represent I as a product of prime ideals? Is R integrally closed in its field of fractions? Is R Noetherian? Is R a Dedekind domain?
6. Prove that a Dedekind domain is a unique factorization domain if and only if it is a principal ideal domain.
7. Consider the ideal $I=\langle x, p\rangle \subseteq \mathbf{Z}[x]$ for some prime element $p \in \mathbf{Z}$. Show that the ideal I^{2} cannot be generated by 2 elements.
8. Let $K=\mathbf{Q}(\alpha)$ where $\alpha=\sqrt[3]{2}$. Recall that $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$.

- Consider the ideal $\langle 5\rangle \subset \mathcal{O}_{K}$. Verify that $\langle 5\rangle=\langle 5, \alpha+2\rangle\left\langle 5, \alpha^{2}+3 \alpha-1\right\rangle$.
- Set $\mathfrak{p}=\left\langle 5, \alpha^{2}+3 \alpha-1\right\rangle$. Show that there is an endomorphism of rings

$$
\mathbf{Z}[x] /\left(5, x^{2}+3 x-1\right) \rightarrow \mathcal{O}_{K} / \mathfrak{p} .
$$

- Find an element $\beta \in \mathcal{O}_{K}$ such that $\langle 5, \alpha+2\rangle^{2}=\langle 25, \beta\rangle$.

