METU, Spring 2018, Math 523. Exercise Set 7

- 1. Let \mathfrak{p} be a proper ideal of a commutative ring R with identity 1_R . Show that the following are equivalent:
 - For all elements $a, b \in R$, $ab \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
 - For all ideals $\mathfrak{a}, \mathfrak{b}$ in $R, \mathfrak{ab} \subseteq \mathfrak{p}$ implies $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$.
- 2. Let R be an integral domain. For nonzero ideals $I, J \subset R$, define the relation

 $I \sim J \iff \alpha I = \beta J$ for some nonzero $\alpha, \beta \in R$.

- Prove that \sim is an equivalence relation.
- Describe the corresponding equivalence class if I is principal.
- Given an ideal I, suppose that there is an ideal J such that IJ is principal. Does this property make the set of ideal classes a group?
- 3. Let R be an integral domain. Prove that the followings are equivalent.
 - Every ideal is finitely generated.
 - Every ascending chain of ideals stabilizes (Ascending Chain Condition).
 - Every non-empty set \mathcal{S} of ideals has a maximal member.
- 4. Let K be a number field of degree n over **Q**. Show that every non-zero ideal $\mathfrak{a} \subset \mathcal{O}_K$ is a free abelian group of rank n.
- 5. Consider the ideal $I = \langle x, 6 \rangle$ of the ring $R = \mathbb{Z}[x]$. Show that there are infinitely many prime ideals of R that is contained in I. Is it possible to represent I as a product of prime ideals? Is R integrally closed in its field of fractions? Is R Noetherian? Is R a Dedekind domain?
- 6. Prove that a Dedekind domain is a unique factorization domain if and only if it is a principal ideal domain.
- 7. Consider the ideal $I = \langle x, p \rangle \subseteq \mathbf{Z}[x]$ for some prime element $p \in \mathbf{Z}$. Show that the ideal I^2 cannot be generated by 2 elements.
- 8. Let $K = \mathbf{Q}(\alpha)$ where $\alpha = \sqrt[3]{2}$. Recall that $\mathcal{O}_K = \mathbf{Z}[\alpha]$.
 - Consider the ideal $\langle 5 \rangle \subset \mathcal{O}_K$. Verify that $\langle 5 \rangle = \langle 5, \alpha + 2 \rangle \langle 5, \alpha^2 + 3\alpha 1 \rangle$.
 - Set $\mathfrak{p} = \langle 5, \alpha^2 + 3\alpha 1 \rangle$. Show that there is an endomorphism of rings

$$\mathbf{Z}[x]/(5, x^2 + 3x - 1) \twoheadrightarrow \mathcal{O}_K/\mathfrak{p}.$$

• Find an element $\beta \in \mathcal{O}_K$ such that $\langle 5, \alpha + 2 \rangle^2 = \langle 25, \beta \rangle$.