METU, Spring 2018, Math 523.
 Exercise Set 6

1. Show that the Diophantine equation $x^{2}-6 y^{2}=523$ has infinitely many solutions.
2. Let $K=\mathbf{Q}(\sqrt{m})$ for some squarefree integer m. Find all units in \mathcal{O}_{K} for each $m<0$.
3. Show that $\mathbf{Z}[\sqrt{-30}]$ and $\mathbf{Z}[\sqrt{30}]$ are not a unique factorization domains.
4. Let R be a unique factorization domain and let d be a nonzero element of R. Show that there are only a finite number of distinct principal ideals that contain the element d. As an example, find all of ideals of $\mathbf{Z}[i]$ that contain 30 .
5. If $K=\mathbf{Q}\left(\zeta_{5}\right)$ or $K=\mathbf{Q}\left(\zeta_{8}\right)$, then show that \mathcal{O}_{K} is Euclidean.
6. Let R be a Euclidean domain. Show that $u \in R$ is a unit if and only if $N(u)=N\left(1_{R}\right)$.
7. Show that the only solution of the Diophantine equation $x^{3}=y^{2}+1$ is $(0,1)$.
8. Consider the Diophantine equation $x^{3}=y^{2}+26$. Imitate the idea of the previous question by assuming $\mathbf{Z}[\sqrt{-26}]$ is a UFD. End up with the conclusion that there is no solution, a contradiction since $(3, \pm 1)$ and $(35, \pm 207)$ are solutions. Conclude that $\mathbf{Z}[\sqrt{-26}]$ is not a UFD.
