METU, Spring 2018, Math 523. Exercise Set 6

- 1. Show that the Diophantine equation $x^2 6y^2 = 523$ has infinitely many solutions.
- 2. Let $K = \mathbf{Q}(\sqrt{m})$ for some squarefree integer m. Find all units in \mathcal{O}_K for each m < 0.
- 3. Show that $\mathbf{Z}[\sqrt{-30}]$ and $\mathbf{Z}[\sqrt{30}]$ are not a unique factorization domains.
- 4. Let R be a unique factorization domain and let d be a nonzero element of R. Show that there are only a finite number of distinct principal ideals that contain the element d. As an example, find all of ideals of $\mathbf{Z}[i]$ that contain 30.
- 5. If $K = \mathbf{Q}(\zeta_5)$ or $K = \mathbf{Q}(\zeta_8)$, then show that \mathcal{O}_K is Euclidean.
- 6. Let R be a Euclidean domain. Show that $u \in R$ is a unit if and only if $N(u) = N(1_R)$.
- 7. Show that the only solution of the Diophantine equation $x^3 = y^2 + 1$ is (0, 1).
- 8. Consider the Diophantine equation $x^3 = y^2 + 26$. Imitate the idea of the previous question by assuming $\mathbb{Z}[\sqrt{-26}]$ is a UFD. End up with the conclusion that there is no solution, a contradiction since $(3, \pm 1)$ and $(35, \pm 207)$ are solutions. Conclude that $\mathbb{Z}[\sqrt{-26}]$ is not a UFD.