METU, Spring 2018, Math 523. Exercise Set 5

- 1. Let $K = \mathbf{Q}(\sqrt{3})$ and let \mathfrak{m} be a maximal ideal of \mathcal{O}_K that contains 2. Show that $\mathfrak{m} = \langle 2, 1 + \sqrt{3} \rangle$ and $\mathfrak{m}^2 = \langle 2 \rangle$.
- 2. Let d_K be the discriminant of the quadratic number field K. If $w = (\sqrt{d_K} + d_K)/2$, then show that $\{1, w\}$ is an integral basis for \mathcal{O}_K .
- 3. Give a pair of quadratic number fields K and L such that $\mathcal{O}_{KL} \neq \mathcal{O}_K \mathcal{O}_L$. If $d_K = \operatorname{disc}(\mathcal{O}_K)$ and $d_L = \operatorname{disc}(\mathcal{O}_L)$, then what is $\operatorname{gcd}(d_K, d_L)$ for the example you have given?
- 4. Let K and L be number fields with discriminants d_K and d_L . Set $d = \text{gcd}(d_K, d_L)$. The compositum KL is the smallest field that contains both K and L by definition. Suppose that $[KL : \mathbf{Q}] = [K : \mathbf{Q}] \cdot [L : \mathbf{Q}]$. Then show that

$$\mathcal{O}_{KL} \subseteq \frac{1}{d} \mathcal{O}_K \mathcal{O}_L$$

In particular if d = 1, then show that $\mathcal{O}_{KL} = \mathcal{O}_K \mathcal{O}_L$. (See Marcus, Chap. 2, Thm. 12.)

- 5. Show that every quadratic field K is contained in a cyclotomic field $\mathbf{Q}(\zeta_k)$ for some positive integer k. Recall that we have shown $K = \mathbf{Q}(\sqrt{m})$ for some squarefree integer m. What is the relation between m and k, if k is assumed to be the minimal such integer? (Hint: See Marcus Chap. 2, Ex. 8).
- 6. Let K be the *m*-th cyclotomic field $\mathbf{Q}(\zeta_m)$. Recall that $\mathcal{O}_K = \mathbf{Z}[\zeta_m]$.
 - (a) Let *m* be a power of a prime *p*. If gcd(p, ab) = 1, then show that $(1 \zeta_m^a)/(1 \zeta_m^b)$ is a unit in \mathcal{O}_K .
 - (b) Let m = pq where p and q are distinct primes. Show that $1 \zeta_m$ is a unit in \mathcal{O}_K .