METU, Spring 2018, Math 523.
 Exercise Set 5

1. Let $K=\mathbf{Q}(\sqrt{3})$ and let \mathfrak{m} be a maximal ideal of \mathcal{O}_{K} that contains 2. Show that $\mathfrak{m}=\langle 2,1+\sqrt{3}\rangle$ and $\mathfrak{m}^{2}=\langle 2\rangle$.
2. Let d_{K} be the discriminant of the quadratic number field K. If $w=\left(\sqrt{d_{K}}+d_{K}\right) / 2$, then show that $\{1, w\}$ is an integral basis for \mathcal{O}_{K}.
3. Give a pair of quadratic number fields K and L such that $\mathcal{O}_{K L} \neq \mathcal{O}_{K} \mathcal{O}_{L}$. If $d_{K}=$ $\operatorname{disc}\left(\mathcal{O}_{K}\right)$ and $d_{L}=\operatorname{disc}\left(\mathcal{O}_{L}\right)$, then what is $\operatorname{gcd}\left(d_{K}, d_{L}\right)$ for the example you have given?
4. Let K and L be number fields with discriminants d_{K} and d_{L}. Set $d=\operatorname{gcd}\left(d_{K}, d_{L}\right)$. The compositum $K L$ is the smallest field that contains both K and L by definition. Suppose that $[K L: \mathbf{Q}]=[K: \mathbf{Q}] \cdot[L: \mathbf{Q}]$. Then show that

$$
\mathcal{O}_{K L} \subseteq \frac{1}{d} \mathcal{O}_{K} \mathcal{O}_{L}
$$

In particular if $d=1$, then show that $\mathcal{O}_{K L}=\mathcal{O}_{K} \mathcal{O}_{L}$. (See Marcus, Chap. 2, Thm. 12.)
5. Show that every quadratic field K is contained in a cyclotomic field $\mathbf{Q}\left(\zeta_{k}\right)$ for some positive integer k. Recall that we have shown $K=\mathbf{Q}(\sqrt{m})$ for some squarefree integer m. What is the relation between m and k, if k is assumed to be the minimal such integer? (Hint: See Marcus Chap. 2, Ex. 8).
6. Let K be the m-th cyclotomic field $\mathbf{Q}\left(\zeta_{m}\right)$. Recall that $\mathcal{O}_{K}=\mathbf{Z}\left[\zeta_{m}\right]$.
(a) Let m be a power of a prime p. If $\operatorname{gcd}(p, a b)=1$, then show that $\left(1-\zeta_{m}^{a}\right) /\left(1-\zeta_{m}^{b}\right)$ is a unit in \mathcal{O}_{K}.
(b) Let $m=p q$ where p and q are distinct primes. Show that $1-\zeta_{m}$ is a unit in \mathcal{O}_{K}.

