METU, Spring 2018, Math 523. Exercise Set 4

- 1. Show that $f(x) = x^3 + 5x + 1$ is irreducible. Let α be a root of f(x) and let $K = \mathbf{Q}(\alpha)$.
 - Calculate $T_{\mathbf{Q}}^{K}(\alpha^{i})$ for $i \in \{0, 1, 2, 3\}$.
 - Calculate $N_{\mathbf{Q}}^{K}(\alpha j)$ for $j \in \{0, 1, 2\}$.
- 2. This is from Marcus (Chap. 2, Ex. 28). Let $f(x) = x^3 + ax + b$, a and $b \in \mathbb{Z}$ and assume that f is irreducible over Q. Let α be a root of f and $K = \mathbb{Q}(\alpha)$.
 - (a) Show that $f'(\alpha) = -\frac{2a\alpha + 3b}{\alpha}$.
 - (b) Show that $2a\alpha + 3b$ is a root of $\left(\frac{x-3b}{2a}\right)^3 + a\left(\frac{x-3b}{2a}\right) + b$. Use this to find $N(2a\alpha + 3b)$.
 - (c) Show that $disc(1, \alpha, \alpha^2) = -(4a^3 + 27b^2)$.
 - (d) Suppose that $\alpha^3 = \alpha + 1$. Prove that $\{1, \alpha, \alpha^2\}$ is an integral basis for \mathcal{O}_K . Do the same if $\alpha^3 + \alpha = 1$.
- 3. There is no primitive element theorem for the ring of integers. To see this, consider $K = \mathbf{Q}(\sqrt{7}, \sqrt{10})$. Show that $\mathcal{O}_K \neq \mathbf{Z}[\alpha]$ for all $\alpha \in \mathcal{O}_K$. For the details, see Marcus (Chap. 2, Ex. 30).
- 4. Let $\alpha = \sqrt[3]{m}$, where *m* is a cubefree integer. Find an integral basis for $K = \mathbf{Q}(\alpha)$. See Marcus (Chap. 2, Ex. 41).
- 5. Let $K = \mathbf{Q}(\sqrt{m}, \sqrt{n})$ where *m* and *n* are distinct squarefree integers other than 1. Find an integral basis for *K*. See Marcus (Chap. 2, Ex. 42).