METU, Spring 2018, Math 523.
 Exercise Set 4

1. Show that $f(x)=x^{3}+5 x+1$ is irreducible. Let α be a root of $f(x)$ and let $K=\mathbf{Q}(\alpha)$.

- Calculate $T_{\mathbf{Q}}^{K}\left(\alpha^{i}\right)$ for $i \in\{0,1,2,3\}$.
- Calculate $N_{\mathbf{Q}}^{K}(\alpha-j)$ for $j \in\{0,1,2\}$.

2. This is from Marcus (Chap. 2, Ex. 28). Let $f(x)=x^{3}+a x+b, a$ and $b \in \mathbf{Z}$ and assume that f is irreducible over \mathbf{Q}. Let α be a root of f and $K=\mathbf{Q}(\alpha)$.
(a) Show that $f^{\prime}(\alpha)=-\frac{2 a \alpha+3 b}{\alpha}$.
(b) Show that $2 a \alpha+3 b$ is a root of $\left(\frac{x-3 b}{2 a}\right)^{3}+a\left(\frac{x-3 b}{2 a}\right)+b$. Use this to find $N(2 a \alpha+3 b)$.
(c) Show that $\operatorname{disc}\left(1, \alpha, \alpha^{2}\right)=-\left(4 a^{3}+27 b^{2}\right)$.
(d) Suppose that $\alpha^{3}=\alpha+1$. Prove that $\left\{1, \alpha, \alpha^{2}\right\}$ is an integral basis for \mathcal{O}_{K}. Do the same if $\alpha^{3}+\alpha=1$.
3. There is no primitive element theorem for the ring of integers. To see this, consider $K=\mathbf{Q}(\sqrt{7}, \sqrt{10})$. Show that $\mathcal{O}_{K} \neq \mathbf{Z}[\alpha]$ for all $\alpha \in \mathcal{O}_{K}$. For the details, see Marcus (Chap. 2, Ex. 30).
4. Let $\alpha=\sqrt[3]{m}$, where m is a cubefree integer. Find an integral basis for $K=\mathbf{Q}(\alpha)$. See Marcus (Chap. 2, Ex. 41).
5. Let $K=\mathbf{Q}(\sqrt{m}, \sqrt{n})$ where m and n are distinct squarefree integers other than 1 . Find an integral basis for K. See Marcus (Chap. 2, Ex. 42).
