METU, Spring 2018, Math 523.
 Exercise Set 3

1. Show that $\mathbf{Q}(\sqrt{2}, i)=\mathbf{Q}\left(\zeta_{8}\right)$ where $\zeta_{8}=\exp (2 \pi i / 8)$. Find all embeddings (monomorphisms) from $\mathbf{Q}(\sqrt{2}, i)$ to \mathbf{C}. Express each such embedding in the form $f_{i}\left(\zeta_{8}\right)=\zeta_{8}^{i}$.
2. For each of the following, determine if it is an algebraic integer or not.

- $523 \sqrt{5}+2018$,
- $(\sqrt{7}+1) / 2$,
- $\left(\sqrt[3]{19^{2}}+\sqrt[3]{19}+1\right) / 3$,
- $(\sqrt{2}+\sqrt{-1}) / 2$,
- $(2 \sqrt{-27}+3) / 6$

3. Find a 6×6 matrix M with coefficients from \mathbf{Z} such that the minimal polynomial of $\alpha=\sqrt[3]{2}+\sqrt{5}$ over \mathbf{Q} is given by the determinant of $x I-M$.
4. Show that the additive group of the ring $\mathbf{Z}[\sqrt{5} / 2]$ is not finitely generated. Show that the additive group of the ring $\mathbf{Z}[(\sqrt{5}+1) / 2]$ is finitely generated.
5. Suppose that $K=\mathbf{Q}(\sqrt{m})$ for some squarefree integer $m \in \mathbf{Z}$. Prove that the subring of algebraic integers of K is given by

$$
\mathcal{O}_{K}= \begin{cases}\{a+b \sqrt{m}: a, b \in \mathbf{Z}\} & \text { if } m \equiv 2,3(\bmod 4), \\ \{(a+b \sqrt{m}) / 2: a, b \in \mathbf{Z}, a \equiv b(\bmod 2)\} & \text { if } m \equiv 1(\bmod 4) .\end{cases}
$$

6. Prove the Vandermonde determinant, i.e. show that

$$
\operatorname{det}\left[t_{i}^{j-1}\right]_{n \times n}=\prod_{1 \leq i, j \leq n}\left(t_{i}-t_{j}\right) .
$$

7. Show that $\sqrt{3} \notin \mathbf{Q}(\sqrt[4]{2})$. Show that $\sqrt{5} \in \mathbf{Q}\left(\zeta_{5}\right)$ where $\zeta_{5}=\exp (2 \pi i / 5)$.
