METU, Spring 2018, Math 523. Exercise Set 2

- 1. We know that R[x] is a principal ideal domain if R is a field (because the division algorithm works). What about the converse? If R[x] is a principal ideal domain, what can you say about R? Is it necessarily a field?
- 2. Let R be a principal ideal domain. If $\mathfrak{p} \subset R$ is a prime ideal then prove that the quotient R/\mathfrak{p} is also a principal ideal domain. Can you drop the primeness condition on the ideal \mathfrak{p} and still have the same property?
- 3. Let R be a commutative ring with identity. The product of two ideals I and J consists of all finite sums of products ij where $i \in I$ and $j \in J$. Prove that

$$I \cdot J = I \cap J$$

if I and J are relatively prime, i.e. I + J = R. Is the above equality still true if we drop the condition of being relatively prime on ideals I and J?

- 4. Let R be a principal ideal domain and let A be an ideal of R. Show that A is prime if and only if A is maximal.
- 5. Let K/\mathbf{Q} be a finite field extension and let α be a nonzero element in K. If $f(x) \in \mathbf{Q}[x]$ is a monic polynomial of smallest degree such that $f(\alpha) = 0$ then show that f(x) is unique and irreducible.
- 6. Construct a field $\mathbf{F}_{16} \cong R/\mathfrak{m}$ with 16 elements by choosing a ring R and a maximal ideal $\mathfrak{m} \subset R$ suitably.
 - Determine an element $r \in R$ such that the corresponding element in \mathbf{F}_{16} generates the multiplicative group \mathbf{F}_{16}^{\times} . Construct a subfield \mathbf{F}_4 of \mathbf{F}_{16} with 4 elements.
 - What is $[\mathbf{F}_{16}:\mathbf{F}_4]$? Is there a nontrivial automorphism of \mathbf{F}_{16} fixing the subfield \mathbf{F}_4 pointwise?
- 7. Let K be a field extension of **Q** such that $[K : \mathbf{Q}] = 2$. Show that $K = \mathbf{Q}[\sqrt{m}]$ for some integer $m \in \mathbf{Z}$. Give an example of a field extension L/\mathbf{Q} such that $[L : \mathbf{Q}] = 3$ and $L \neq \mathbf{Q}[\sqrt[3]{m}]$ for any integer $m \in \mathbf{Z}$.
- 8. Let $R = \mathbb{Z}[\sqrt{-3}]$ and let $I = \langle 2, 1 + \sqrt{-3} \rangle$. Show that $I \neq \langle 2 \rangle$ but $I^2 = 2I$. Conclude that ideals in R do not factor uniquely into prime ideals.
- 9. Determine all subspaces of the **Q**-vector space \mathbf{Q}^2 . Determine all submodules of the **Z**-module \mathbf{Z}^2 .
- 10. Let R be an integral domain. Let $\pi \in R$ be a prime element and let $\alpha \in R$ be an irreducible element. What can you say about the ideals $\langle \pi \rangle$ and $\langle \alpha \rangle$ in terms of being prime and maximal?