METU, Spring 2018, Math 523.
 Exercise Set 2

1. We know that $R[x]$ is a principal ideal domain if R is a field (because the division algorithm works). What about the converse? If $R[x]$ is a principal ideal domain, what can you say about R ? Is it necessarily a field?
2. Let R be a principal ideal domain. If $\mathfrak{p} \subset R$ is a prime ideal then prove that the quotient R / \mathfrak{p} is also a principal ideal domain. Can you drop the primeness condition on the ideal \mathfrak{p} and still have the same property?
3. Let R be a commutative ring with identity. The product of two ideals I and J consists of all finite sums of products $i j$ where $i \in I$ and $j \in J$. Prove that

$$
I \cdot J=I \cap J
$$

if I and J are relatively prime, i.e. $I+J=R$. Is the above equality still true if we drop the condition of being relatively prime on ideals I and J ?
4. Let R be a principal ideal domain and let A be an ideal of R. Show that A is prime if and only if A is maximal.
5. Let K / \mathbf{Q} be a finite field extension and let α be a nonzero element in K. If $f(x) \in \mathbf{Q}[x]$ is a monic polynomial of smallest degree such that $f(\alpha)=0$ then show that $f(x)$ is unique and irreducible.
6. Construct a field $\mathbf{F}_{16} \cong R / \mathfrak{m}$ with 16 elements by choosing a ring R and a maximal ideal $\mathfrak{m} \subset R$ suitably.

- Determine an element $r \in R$ such that the corresponding element in \mathbf{F}_{16} generates the multiplicative group \mathbf{F}_{16}^{\times}. Construct a subfield \mathbf{F}_{4} of \mathbf{F}_{16} with 4 elements.
- What is $\left[\mathbf{F}_{16}: \mathbf{F}_{4}\right]$? Is there a nontrivial automorphism of \mathbf{F}_{16} fixing the subfield \mathbf{F}_{4} pointwise?

7. Let K be a field extension of \mathbf{Q} such that $[K: \mathbf{Q}]=2$. Show that $K=\mathbf{Q}[\sqrt{m}]$ for some integer $m \in \mathbf{Z}$. Give an example of a field extension L / \mathbf{Q} such that $[L: \mathbf{Q}]=3$ and $L \neq \mathbf{Q}[\sqrt[3]{m}]$ for any integer $m \in \mathbf{Z}$.
8. Let $R=\mathbf{Z}[\sqrt{-3}]$ and let $I=\langle 2,1+\sqrt{-3}\rangle$. Show that $I \neq\langle 2\rangle$ but $I^{2}=2 I$. Conclude that ideals in R do not factor uniquely into prime ideals.
9. Determine all subspaces of the \mathbf{Q}-vector space \mathbf{Q}^{2}. Determine all submodules of the \mathbf{Z}-module \mathbf{Z}^{2}.
10. Let R be an integral domain. Let $\pi \in R$ be a prime element and let $\alpha \in R$ be an irreducible element. What can you say about the ideals $\langle\pi\rangle$ and $\langle\alpha\rangle$ in terms of being prime and maximal?
