METU, Spring 2018, Math 523.
 Exercise Set 1

1. Consider the ring $R=\mathbf{Z}[\sqrt{-1}]$ with the norm map $N(a+b i)=a^{2}+b^{2}$. This ring is referred as Gaussian integers.

- Verify that $N(\alpha \beta)=N(\alpha) N(\beta)$ for all $\alpha, \beta \in R$.
- Find all units of R.
- Classify prime elements of R in terms of primes of \mathbf{Z}.
- Let n be a positive integer. Show that n can be expressed as a sum of two square if and only if $n=N(\alpha)$ for some $\alpha \in R$. Classify all integers n which can be written as a sum of two squares.
- Write a Pari/GP script to determine the number of ways you can express $n=$ $19890=2 \cdot 5 \cdot 9 \cdot 13 \cdot 17$ as a sum of two squares. Explain this number by using the properties of Gaussian integers.

2. Consider the ring $R=\mathbf{Z}[\sqrt{-2}]$.

- Show that R is a Euclidean domain under the norm map $a+b \sqrt{-2} \mapsto a^{2}+2 b^{2}$.
- Find all units of R.
- Classify prime elements of R in terms of primes of \mathbf{Z}.
- Let p be an odd prime. Show that the congruence $x^{2} \equiv-2(\bmod p)$ has a solution if and only if $p \equiv 1,3(\bmod 8)$. In other words show that the Legendre symbol satisfies $\left(\frac{-2}{p}\right)=1$ if and only if $p \equiv 1,3(\bmod 8)$. (Hint: use Gauss's lemma for quadratic reciprocity.)
- Find all primes $p \in \mathbf{Z}$ of the form $p=x^{2}+2 y^{2}$ for some $x, y \in \mathbf{Z}$.
- Find all solutions of the equation $x^{2}+2 y^{2}=z^{2}$ with $x, y, z \in \mathbf{Z}$.

3. Consider the ring $R=\mathbf{Z}[\sqrt{-5}]$.

- Show that R is not a Euclidean domain under the norm map $a+b \sqrt{-5} \mapsto a^{2}+5 b^{2}$. Do this in two different ways:
- Divide $1+\sqrt{-5}$ by 2 .
- Show that $\mathbf{Z}[\sqrt{-5}]$ is not a UFD
- Give an example of an irreducible element $\alpha \in R$ that is not prime.
- Determine the primes p for which $\left(\frac{-5}{p}\right)=1$ by using the quadratic reciprocity law.
- Write a Pari/GP script to determine the primes $p<1000$ which are of the form $p=x^{2}+5 y^{2}$ for some $x, y \in \mathbf{Z}$. Do the same for $p=2 x^{2}+2 x y+3 y^{2}$.
- Find all solutions of the equation $x^{2}+5 y^{2}=z^{2}$ with $x, y, z \in \mathbf{Z}$.

