Name:
Signature:
METU, Spring 2018, Math 523.

Midterm

1. (20pts) Let K and L be number fields with ring of integers \mathcal{O}_{K} and \mathcal{O}_{L}, discriminants d_{K} and d_{L}, respectively. Determine for each of the following statements if it is true or not.

- $\mathcal{O}_{K L}=\mathcal{O}_{K} \mathcal{O}_{L}$.
- $K \cap L=\mathbf{Q}$ if and only if $\operatorname{gcd}\left(d_{K}, d_{L}\right)=1$.
- If $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_{K}$, then $K=\mathbf{Q}(\alpha)$.
- If $K=\mathbf{Q}(\alpha)$ for some $\alpha \in \mathcal{O}_{K}$, then $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$.

2. (20pts) Let $f(x)=x^{3}+a x+b$ be an irreducible polynomial over \mathbf{Q}. If α is a root of $f(x)$ and $K=\mathbf{Q}(\alpha)$, then determine the following traces and norms in terms of a and b.

- $T_{\mathbf{Q}}^{K}(1)$
- $T_{\mathbf{Q}}^{K}(\alpha)$
- $T_{\mathbf{Q}}^{K}\left(\alpha^{2}\right)$
- $T_{\mathbf{Q}}^{K}\left(\alpha^{3}\right)$
- $N_{\mathbf{Q}}^{K}(2)$
- $N_{\mathbf{Q}}^{K}(\alpha)$
- $N_{\mathbf{Q}}^{K}\left(\alpha^{2}\right)$
- $N_{\mathbf{Q}}^{K}(\alpha-2)$

3. (20pts) Consider the polynomial $f(x)=x^{4}+x+1$ with integer coefficients.

- Show that $f(x)$ is irreducible in $\mathbf{F}_{2}[x]$ (and therefore in $\mathbf{Z}[x]$).
- Let $\alpha \in \mathbf{C}$ be a root of $f(x)$. Show that $\operatorname{disc}\left(1, \alpha, \alpha^{2}, \alpha^{3}\right)=229$. Find the ring of integers of the number field $\mathbf{Q}(\alpha)$.

4. (20pts) For each of the following, determine if the given factorizations are distinct in the indicated rings.

- The factorizations $6=2 \cdot 3$ and $6=(\sqrt{7}+1)(\sqrt{7}-1)$ in the ring $\mathbf{Z}[\sqrt{7}]$.
- The factorizations $6=2 \cdot 3$ and $6=(6-\sqrt{30})(6+\sqrt{30})$ in the ring $\mathbf{Z}[\sqrt{30}]$.

5. (20pts) Suppose that $\zeta_{p}=\exp (2 \pi i / p)$, a primitive p-th root of unity.

- Find coefficients $c_{i} \in \mathbf{Z}$ such that $\sqrt{5}=\sum_{i=0}^{3} c_{i} \zeta_{5}^{i}$. (Hint: Find $\min \left(\zeta_{5}+\frac{1}{\zeta_{5}}, \mathbf{Q}\right)$).
- Show that $\sqrt{7}$ is not an element of $\mathbf{Q}\left(\zeta_{7}\right)$.

