Name: Signature:

METU, Spring 2018, Math 523. Midterm

1. (20pts) Let K and L be number fields with ring of integers \mathcal{O}_K and \mathcal{O}_L , discriminants d_K and d_L , respectively. Determine for each of the following statements if it is true or not.

•
$$\mathcal{O}_{KL} = \mathcal{O}_K \mathcal{O}_L.$$

• $K \cap L = \mathbf{Q}$ if and only if $gcd(d_K, d_L) = 1$.

• If $\mathcal{O}_K = \mathbf{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$, then $K = \mathbf{Q}(\alpha)$.

• If $K = \mathbf{Q}(\alpha)$ for some $\alpha \in \mathcal{O}_K$, then $\mathcal{O}_K = \mathbf{Z}[\alpha]$.

2. (20pts) Let $f(x) = x^3 + ax + b$ be an irreducible polynomial over **Q**. If α is a root of f(x) and $K = \mathbf{Q}(\alpha)$, then determine the following traces and norms in terms of a and b.

- $T^K_{\mathbf{Q}}(1)$
- $T^K_{\mathbf{Q}}(\alpha)$
- $T^K_{\mathbf{Q}}(\alpha^2)$
- $T^K_{\mathbf{Q}}(\alpha^3)$
- $N_{\mathbf{Q}}^{K}(2)$
- $N_{\mathbf{Q}}^{K}(\alpha)$
- $N_{\mathbf{Q}}^{K}(\alpha^{2})$
- $N_{\mathbf{Q}}^{K}(\alpha-2)$

- 3. (20pts) Consider the polynomial $f(x) = x^4 + x + 1$ with integer coefficients.
 - Show that f(x) is irreducible in $\mathbf{F}_2[x]$ (and therefore in $\mathbf{Z}[x]$).

• Let $\alpha \in \mathbf{C}$ be a root of f(x). Show that $\operatorname{disc}(1, \alpha, \alpha^2, \alpha^3) = 229$. Find the ring of integers of the number field $\mathbf{Q}(\alpha)$.

4. (20pts) For each of the following, determine if the given factorizations are distinct in the indicated rings.

• The factorizations $6 = 2 \cdot 3$ and $6 = (\sqrt{7} + 1)(\sqrt{7} - 1)$ in the ring $\mathbb{Z}[\sqrt{7}]$.

• The factorizations $6 = 2 \cdot 3$ and $6 = (6 - \sqrt{30})(6 + \sqrt{30})$ in the ring $\mathbb{Z}[\sqrt{30}]$.

- 5. (20pts) Suppose that $\zeta_p = \exp(2\pi i/p)$, a primitive *p*-th root of unity.
 - Find coefficients $c_i \in \mathbf{Z}$ such that $\sqrt{5} = \sum_{i=0}^{3} c_i \zeta_5^i$. (Hint: Find $\min\left(\zeta_5 + \frac{1}{\zeta_5}, \mathbf{Q}\right)$).

• Show that $\sqrt{7}$ is not an element of $\mathbf{Q}(\zeta_7)$.