Name:
Signature:
METU, Spring 2018, Math 523.
Final

1. (25pts) Let $\alpha=\sqrt[3]{20}$ and $K=\mathbf{Q}(\alpha)$. You are given that $\mathcal{O}_{K}=\mathbf{Z}\left[1, \alpha, \alpha^{2} / 2\right]$. Find the ideal prime decomposition of all ideals $p \mathbf{Z}$ that ramifies in the extension K / \mathbf{Q}.
2. (25pts) Consider the number fields $K=\mathbf{Q}(\sqrt{-6})$ and $L=\mathbf{Q}(\sqrt{-6}, \sqrt{2})$. Show that the extension L / K is unramified, i.e. show that there is no prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ that ramifies in L.
3. (25pts) Let $K=\mathbf{Q}(\sqrt{-21})$. Show that $\mathrm{Cl}(K) \cong \mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
4. (25pts) You are given that $u=3+\sqrt{10}$ is the fundamental unit of $\mathbf{Q}(\sqrt{10})$. For each one of the following Diophantine equations, answer the questions: 1) Does there exist any solution? 2) Is the number of solutions finite or infinite? 3) Is it possible to give a procedure to obtain each solution?

- $x^{2}-10 y^{2}=1$
- $x^{2}-10 y^{2}=3^{1001}$
- $x^{2}-10 y^{2}=7^{1001}$
- $x^{2}-10 y^{2}=31^{1001}$

