METU, Fall 2011, Math 523.
 Homework 9

1. (Exercise 5.40. Marcus) Let $K=\mathbf{Q}(\sqrt{m})$ be a real quadratic field where m is a squarefree integer.
(a) Assume that $m \equiv 1(\bmod 4)$. Let a be smallest positive integer such that

$$
m a^{2} \pm 4=b^{2}
$$

for some positive integer b. Explain why such integers a and b exist and prove that $u=(a \sqrt{m}+b) / 2$ is the fundamental unit.
(b) Describe a similar procedure for other cases $m \equiv 2,3(\bmod 4)$.
(c) For each squarefree integer $2 \leq m \leq 17$, find u such that $\mathcal{O}_{K}^{\times}=\left\{ \pm u^{k}: k \in \mathbf{Z}\right\}$.
2. Let K be a cubic extension of \mathbf{Q} with only one real embedding. Let u be the fundamental unit in \mathcal{O}_{K}^{\times}.
(a) (Exercise 5.35. Marcus) Show that $u^{3}>\left|d_{K}\right| / 4-7$.
(b) If α is a real root of $x^{3}-2$ and $K=\mathbf{Q}(\alpha)$, then show that $u=\alpha^{2}+\alpha+1$.
(c) If α is a real root of $x^{3}-4 x+4$ and $K=\mathbf{Q}(\alpha)$, then show that $u^{2}=-\alpha+1$.
3. (The simplest cubic fields) Let a be an integer such that $p=a^{2}+3 a+9$ is a prime number. Set $f(x)=x^{3}-a x^{2}-(a+3) x-1$. Let ρ be a root of f and $K=\mathbf{Q}(\rho)$.
(a) Show that f is irreducible and compute d_{K}.
(b) Is the extension K / \mathbf{Q} normal? How many real embeddings are there?
(c) Prove that $u=\rho$ and $v=\rho+1$ are units in \mathcal{O}_{K}.
(d) Find generators for the unit group \mathcal{O}_{K}^{\times}.
4. Let $K=\mathbf{Q}\left(\zeta_{p}\right)$ be the p-th cyclotomic field and let u be a unit in \mathcal{O}_{K}. Show that u is the product of a real unit and a root of unity. Does this contradict to Dirichlet's Unit Theorem?
5. Let $m \geq 3$ be an integer and $K=\mathbf{Q}\left(\zeta_{m}\right)$. If k is an integer relatively prime to m then show that $\epsilon_{k}=\sin (k \pi / m) / \sin (\pi / m)$ is a real unit in \mathcal{O}_{K}^{\times}.

