METU, Fall 2011, Math 523. Homework 9

- 1. (*Exercise 5.40. Marcus*) Let $K = \mathbf{Q}(\sqrt{m})$ be a real quadratic field where m is a squarefree integer.
 - (a) Assume that $m \equiv 1 \pmod{4}$. Let a be smallest positive integer such that

$$ma^2 \pm 4 = b^2$$

for some positive integer b. Explain why such integers a and b exist and prove that $u = (a\sqrt{m} + b)/2$ is the fundamental unit.

- (b) Describe a similar procedure for other cases $m \equiv 2, 3 \pmod{4}$.
- (c) For each squarefree integer $2 \le m \le 17$, find u such that $\mathcal{O}_K^{\times} = \{\pm u^k : k \in \mathbf{Z}\}.$
- 2. Let K be a cubic extension of **Q** with only one real embedding. Let u be the fundamental unit in \mathcal{O}_K^{\times} .
 - (a) (*Exercise 5.35. Marcus*) Show that $u^3 > |d_K|/4 7$.
 - (b) If α is a real root of $x^3 2$ and $K = \mathbf{Q}(\alpha)$, then show that $u = \alpha^2 + \alpha + 1$.
 - (c) If α is a real root of $x^3 4x + 4$ and $K = \mathbf{Q}(\alpha)$, then show that $u^2 = -\alpha + 1$.
- 3. (The simplest cubic fields) Let a be an integer such that $p = a^2 + 3a + 9$ is a prime number. Set $f(x) = x^3 ax^2 (a+3)x 1$. Let ρ be a root of f and $K = \mathbf{Q}(\rho)$.
 - (a) Show that f is irreducible and compute d_K .
 - (b) Is the extension K/\mathbf{Q} normal? How many real embeddings are there?
 - (c) Prove that $u = \rho$ and $v = \rho + 1$ are units in \mathcal{O}_K .
 - (d) Find generators for the unit group \mathcal{O}_K^{\times} .
- 4. Let $K = \mathbf{Q}(\zeta_p)$ be the *p*-th cyclotomic field and let *u* be a unit in \mathcal{O}_K . Show that *u* is the product of a real unit and a root of unity. Does this contradict to Dirichlet's Unit Theorem?
- 5. Let $m \ge 3$ be an integer and $K = \mathbf{Q}(\zeta_m)$. If k is an integer relatively prime to m then show that $\epsilon_k = \sin(k\pi/m)/\sin(\pi/m)$ is a real unit in \mathcal{O}_K^{\times} .