METU, Fall 2011, Math 523.
 Homework 8

1. Let K be a number field. If $e(\mathfrak{p} \mid(p))=1$ for each prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ lying over each prime $p \in \mathbf{Z}$, then show that $K=\mathbf{Q}$.
2. For squarefree integers $-10 \leq m \leq 10$, compute the class number of $K=\mathbf{Q}(\sqrt{m})$.
3. Let $K=\mathbf{Q}(\sqrt{-3})$ and $L=\mathbf{Q}(\sqrt{-6})$. Prove that $h_{K L} \neq h_{K} h_{L}$.
4. There are 9 imaginary quadratic fields $K=\mathbf{Q}(\sqrt{m})$ with class number one (this is a well known fact due to Heegner and Stark). The set of squarefree integers m giving such fields is

$$
M=\{-1,-2,-3,-7,-11,-19,-43,-67,-163\} .
$$

- Verify that the imaginary quadratic field $K=\mathbf{Q}(\sqrt{m})$ has class number one, for each integer $m \in M$.
- (Exercise 5.10. Marcus) Let $-2000<m<0$ be a squarefree negative integer such that $K=\mathbf{Q}(\sqrt{m})$ has class number one. Show that $m \in M$.

5. Let α be a root of $x^{3}-17$ and let $K=\mathbf{Q}(\alpha)$. Recall that \mathcal{O}_{K} has an integral basis $\{1, \alpha, \beta\}$ where $\beta=\left(\alpha^{2}-\alpha+1\right) / 3$. Show that $h_{K}=1$.
