METU, Fall 2011, Math 523. Homework 7

- 1. Let $K \subset L$ be number fields. A prime $\mathfrak{p} \subset \mathcal{O}_K$ is ramified in L if and only if $e(\mathfrak{P}|\mathfrak{p}) > 1$ for some prime $\mathfrak{P} \subset \mathcal{O}_L$ lying over \mathfrak{p} . Prove that only finitely many primes of \mathcal{O}_K are ramified in L.
- 2. Set $\alpha = \sqrt[3]{19} \in \mathbf{R}$. Recall that $\{1, \alpha, (1 + \alpha + \alpha^2)/3\}$ is an integral basis for $L = \mathbf{Q}(\alpha)$.
 - Show that $d_L = -3 \cdot 19^2$ and $[\mathcal{O}_L : \mathbf{Z}[\alpha]] = 3$. What is disc $(1, \alpha, \alpha^2)$?
 - If $\beta = (1 + \alpha + \alpha^2)/3$, then show that disc $(1, \beta, \beta^2) = 4d_L$. Verify that the minimal polynomial of β over \mathbb{Q} is $f(x) = x^3 x^2 6x 12$.
 - Find the ideal prime decomposition of $(p) \subset \mathcal{O}_L$ for $p \in \{2, 3, 5, 7\}$.
- 3. Let *L* be a number field. Prove that infinitely many primes $p \in \mathbb{Z}$ split completely (split into $[L : \mathbb{Q}]$ distinct factors) in *L*. Can you apply your argument to $L = \mathbb{Q}(\sqrt[3]{5})$ and construct an infinite family of totally split primes?
- 4. Let $\mathfrak{P} \subset L$ be a prime lying over $\mathfrak{p} \subset K$. Suppose that L/K is a normal extension with Galois group $G = \operatorname{Gal}(L/K)$. Show that
 - the decomposition group $D(\mathfrak{P}|\mathfrak{p})$ is a subgroup of G.
 - the inertia group $I(\mathfrak{P}|\mathfrak{p})$ is a normal subgroup of $D(\mathfrak{P}|\mathfrak{p})$.
- 5. Let $L = \mathbf{Q}(\sqrt{2}, \sqrt{3})$. You are given that $\mathcal{O}_L = \mathbf{Z}[\alpha]$ where $\alpha = (\sqrt{2} + \sqrt{6})/2$.
 - Show that L/\mathbf{Q} is normal and $\operatorname{Gal}(L/\mathbf{Q}) \cong \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$.
 - Prove that the fields $K_1 = \mathbf{Q}(\sqrt{2}), K_2 = \mathbf{Q}(\sqrt{3})$ and $K_3 = \mathbf{Q}(\sqrt{6})$ are all proper subfields of L.
 - Find a prime ideal $\mathfrak{P} \subset \mathcal{O}_L$ lying over p (by giving generators) for each prime $p \in \{2, 3, 5\}$. What is the inertia index $e(\mathfrak{P}|p\mathbf{Z})$ and residual degree $f(\mathfrak{P}|p\mathbf{Z})$?
 - Determine $\mathfrak{p}_i = \mathfrak{P} \cap K_i$ for each $i \in \{1, 2, 3\}$. (There are 9 cases in total.)
 - Let β be an element in \mathcal{O}_L such that $L = \mathbf{Q}(\beta)$. Suppose that $f(x) = \min(\beta, \mathbf{Q})$. Does there exist a prime p such that the reduction of f(x) modulo p is irreducible in $(\mathbf{Z}/p\mathbf{Z})[x]$?