METU, Fall 2011, Math 523. Homework 5

1. Let R be an integral domain. For nonzero ideals $I, J \subset R$, define the relation

 $I \sim J \iff \alpha I = \beta J$ for some $\alpha, \beta \in R$.

- Prove that \sim is an equaivalence relation.
- If I is principal then describe the corresponding equivalence class.
- Given an ideal I, suppose that there is an ideal J such that IJ is principal. Does this property make the set of ideal classes a group? If so what is the group operation?
- 2. Let R be an integral domain. Prove that the followings are equivalent.
 - Every ideal is finitelyy generated.
 - Every ascending chain of ideals stabilizes (Ascending Chain Condition).
 - Every non-empty set \mathcal{S} of ideals has a maximal member.
- 3. Let K be a number field of degree n over **Q**. Show that every non-zero ideal $\mathfrak{a} \subset \mathcal{O}_K$ is a free abelian group of rank n.
- 4. Prove that a Dedekind domain is a unique factorization domain if and only if it is a principal ideal domain.
- 5. Let $K = \mathbf{Q}(\alpha)$ where $\alpha = \sqrt[3]{2}$.
 - Consider the ideal $(5) \subset \mathcal{O}_K$. Verify that $(5) = (5, \alpha + 2)(5, \alpha^2 + 3\alpha 1)$.
 - Set $\mathfrak{p} = (5, \alpha^2 + 3\alpha 1)$. Show that there is an endomomorphism

$$\mathbf{Z}[x]/(5, x^2 + 3x - 1) \twoheadrightarrow \mathcal{O}_K/\mathfrak{p}.$$

• What can you say about \mathfrak{p} and $\mathcal{O}_K/\mathfrak{p}$?