METU, Fall 2011, Math 523.
 Homework 4

1. Let K be a number field of degree n and let A be an additive subgroup of \mathcal{O}_{K} generated by the set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ freely. Prove that $\left|\mathcal{O}_{K} / A\right|^{2}$ divides $\operatorname{disc}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
2. Let $f(x)=x^{5}+a x+b$ with $a, b \in \mathbf{Z}$ and assume f is irreducible over \mathbf{Q}. Let α be a root of f and let $K=\mathbf{Q}(\alpha)$ be the corresponding quintic extension.

- Show that $\operatorname{disc}(\alpha)=4^{4} a^{5}+5^{5} b^{4}$.
- Bonus question: Write a PARI-code which gives all pairs of integers (a, b) satisfying $1 \leq a, b \leq 50$ such that $\operatorname{disc}(\alpha)$ is squarefree. (Observe that this implies $\mathcal{O}_{K}=\mathbf{Z}[\alpha]$ for the resulting number fields.)

3. Let m_{1}, m_{2} be two distinct squarefree integers and suppose that $K_{i}=\mathbf{Q}\left(\sqrt{m_{i}}\right)$ be the corresponding quadratic fields. If $\left\{1, \alpha_{1}\right\}$ and $\left\{1, \alpha_{2}\right\}$ are integral bases for K_{1} and K_{2} respectively, then is it true that $\left\{1, \alpha_{1}, \alpha_{2}, \alpha_{1} \alpha_{2}\right\}$ is an integral basis for the composite field $K_{1} K_{2}$? If it is not true all the time, find a sufficient condition.
4. Let m be a squarefree and cubefree integer such that $m \not \equiv \pm 1(\bmod 9)$.

- Prove that $\left\{1, \sqrt[3]{m},(\sqrt[3]{m})^{2}\right\}$ is an integral basis for the pure cubic field $\mathbf{Q}(\sqrt[3]{m})$.
- Suppose that $K=\mathbf{Q}(\sqrt[3]{5}, \sqrt{19})$. Find an integral basis for \mathcal{O}_{K} using the previous part.

5. Let $\mathcal{O}=\mathbf{Z}[\sqrt{-3}]$ and let $\mathfrak{p} \subset \mathcal{O}$ be the ideal generated by 2 and $1+\sqrt{-3}$.

- Show that \mathfrak{p} is the unique prime ideal containing (2).
- Prove that $\mathfrak{p} \neq(2)$ but $\mathfrak{p}^{2}=(2) \mathfrak{p}$.
- Is it possible to factor ideals in \mathcal{O} uniquely into prime ideals?
- Can we find a quadratic extension $K=\mathbf{Q}(\sqrt{m})$ such that $\mathcal{O}_{K}=\mathcal{O}$?

