METU, Fall 2011, Math 523. Homework 4

- 1. Let K be a number field of degree n and let A be an additive subgroup of \mathcal{O}_K generated by the set $\{\alpha_1, \ldots, \alpha_n\}$ freely. Prove that $|\mathcal{O}_K/A|^2$ divides $\operatorname{disc}(\alpha_1, \ldots, \alpha_n)$.
- 2. Let $f(x) = x^5 + ax + b$ with $a, b \in \mathbb{Z}$ and assume f is irreducible over \mathbb{Q} . Let α be a root of f and let $K = \mathbb{Q}(\alpha)$ be the corresponding quintic extension.
 - Show that $\operatorname{disc}(\alpha) = 4^4 a^5 + 5^5 b^4$.
 - Bonus question: Write a PARI-code which gives all pairs of integers (a, b) satisfying $1 \le a, b \le 50$ such that $\operatorname{disc}(\alpha)$ is squarefree. (Observe that this implies $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for the resulting number fields.)
- 3. Let m_1, m_2 be two distinct squarefree integers and suppose that $K_i = \mathbf{Q}(\sqrt{m_i})$ be the corresponding quadratic fields. If $\{1, \alpha_1\}$ and $\{1, \alpha_2\}$ are integral bases for K_1 and K_2 respectively, then is it true that $\{1, \alpha_1, \alpha_2, \alpha_1\alpha_2\}$ is an integral basis for the composite field K_1K_2 ? If it is not true all the time, find a sufficient condition.
- 4. Let m be a squarefree and cubefree integer such that $m \not\equiv \pm 1 \pmod{9}$.
 - Prove that $\{1, \sqrt[3]{m}, (\sqrt[3]{m})^2\}$ is an integral basis for the pure cubic field $\mathbf{Q}(\sqrt[3]{m})$.
 - Suppose that $K = \mathbf{Q}(\sqrt[3]{5}, \sqrt{19})$. Find an integral basis for \mathcal{O}_K using the previous part.
- 5. Let $\mathcal{O} = \mathbb{Z}[\sqrt{-3}]$ and let $\mathfrak{p} \subset \mathcal{O}$ be the ideal generated by 2 and $1 + \sqrt{-3}$.
 - Show that **p** is the unique prime ideal containing (2).
 - Prove that $\mathbf{p} \neq (2)$ but $\mathbf{p}^2 = (2)\mathbf{p}$.
 - Is it possible to factor ideals in \mathcal{O} uniquely into prime ideals?
 - Can we find a quadratic extension $K = \mathbf{Q}(\sqrt{m})$ such that $\mathcal{O}_K = \mathcal{O}$?