METU, Fall 2011, Math 523.
 Homework 3

1. Let K be a quadratic extension of \mathbf{Q}.

- Show that $K=\mathbf{Q}(\sqrt{m})$ for some integer $m \in \mathbf{Z}$.
- Let $m \neq 0,1$ be a squarefree integer. Show that the quadratics fields $\mathbf{Q}(\sqrt{m})$ are pairwise distinct.

2. Find a 6×6 matrix M with coefficients from \mathbf{Z} such that the minimal polynomial of $\alpha=\sqrt[3]{2}+\sqrt{5}$ over \mathbf{Q} is given by the determinant of $x I-M$.
3. Show that $f(x)=x^{3}+5 x+1$ is irreducible. Let α be a root of $f(x)$ and let $K=\mathbf{Q}(\alpha)$.

- Calculate $T_{\mathbf{Q}}^{K}\left(\alpha^{i}\right)$ for $i \in\{0,1,2,3\}$.
- Calculate $N_{\mathbf{Q}}^{K}(\alpha-j)$ for $j \in\{0,1,2\}$.

4. Set $\alpha=\sqrt[4]{2}$ and $K=\mathbf{Q}(\alpha)$. Use the trace map $T_{\mathbf{Q}}^{K}: K \rightarrow \mathbf{Q}$ to show that $\sqrt{3}$ is not an element of K.
5. Consider the fifth cyclotomic field $K=\mathbf{Q}\left(\zeta_{5}\right)$. It is easy to see that $\left\{1, \zeta_{5}, \zeta_{5}^{2}, \zeta_{5}^{3}\right\}$ is a basis for K over \mathbf{Q}.

- Show that $\operatorname{disc}\left(1, \zeta_{5}, \zeta_{5}^{2}, \zeta_{5}^{3}\right)=5^{3}$.
- Is it true that $\sqrt{5} \in K$? If it is true, than write $\sqrt{5}$ in the basis given above?

