METU, Fall 2011, Math 523. Homework 3

- 1. Let K be a quadratic extension of \mathbf{Q} .
 - Show that $K = \mathbf{Q}(\sqrt{m})$ for some integer $m \in \mathbf{Z}$.
 - Let $m \neq 0, 1$ be a squarefree integer. Show that the quadratics fields $\mathbf{Q}(\sqrt{m})$ are pairwise distinct.
- 2. Find a 6×6 matrix M with coefficients from \mathbf{Z} such that the minimal polynomial of $\alpha = \sqrt[3]{2} + \sqrt{5}$ over \mathbf{Q} is given by the determinant of xI M.
- 3. Show that $f(x) = x^3 + 5x + 1$ is irreducible. Let α be a root of f(x) and let $K = \mathbf{Q}(\alpha)$.
 - Calculate $T_{\mathbf{Q}}^{K}(\alpha^{i})$ for $i \in \{0, 1, 2, 3\}$.
 - Calculate $N_{\mathbf{Q}}^{K}(\alpha j)$ for $j \in \{0, 1, 2\}$.
- 4. Set $\alpha = \sqrt[4]{2}$ and $K = \mathbf{Q}(\alpha)$. Use the trace map $T_{\mathbf{Q}}^{K} : K \to \mathbf{Q}$ to show that $\sqrt{3}$ is not an element of K.
- 5. Consider the fifth cyclotomic field $K = \mathbf{Q}(\zeta_5)$. It is easy to see that $\{1, \zeta_5, \zeta_5^2, \zeta_5^3\}$ is a basis for K over \mathbf{Q} .
 - Show that $disc(1, \zeta_5, \zeta_5^2, \zeta_5^3) = 5^3$.
 - Is it true that $\sqrt{5} \in K$? If it is true, than write $\sqrt{5}$ in the basis given above?